-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanasol.py
93 lines (80 loc) · 2.58 KB
/
anasol.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# -*- coding: utf-8 -*-
import numpy as np
def analyticalSolution(H, cv, uo, T_range, drainage='tb'):
'''
Parameters:
:param H: Height of 1D model.
:param cv: Coefficient of consolidation.
:param uo: Initial excess pore pressure.
:param T_range: Dimensionless time range, list [T1,T2].
:param drainage: Boundary drainage condition.
'tb' - Drained top and bottom boundaries.
't' - Drained top boundary.
'b' - Drained bottom boundary.
Returns:
data1: Height versus pore pressure data for a given time range.
data2: Degree of consolidation versus time data
'''
# T range from linear exponent range in dcc.RangeSlider
T = np.linspace(10**T_range[0], 10**T_range[1], 10)
# Convert linear exponent from dcc.Slider
cv = 10**cv
N = 50 # Discretization
u = np.zeros((len(T), N))
if drainage == 'tb':
h = H/2.0
z = np.linspace(-h, h, N)
u[:, 0] = 0.0
u[:, -1] = 0.0
z_start = 1
z_end = len(z) - 1
elif drainage == 't':
h = H
z = np.linspace(0, h, N)
u[:, -1] = 0.0
z_start = 0
z_end = len(z) - 1
else:
h = H
z = np.linspace(-h, 0, N)
u[:, 0] = 0.0
z_start = 1
z_end = len(z)
# Initial condition just after BCs are applied, at t > 0
u[:, z_start:z_end] = uo
# Positive H range for plotting, len(y) = len(z)
y = np.linspace(0, H, N)
data1 = []
term1 = np.pi * z[z_start:z_end] / (2*h)
for i in range(len(T)):
trace1 = {}
term2 = (np.pi/2)**2 * T[i]
sum1 = 0
for k in range(1, 100):
factor = ((-1.0)**(k-1) / (2*k-1))
sum1 += factor * np.cos((2*k-1) * term1) * \
np.exp(-1.0 * (2*k-1)**2 * term2)
u[i, z_start:z_end] = uo * 4.0/np.pi * sum1
trace1['x'] = u[i, :]
trace1['y'] = y
trace1['name'] = 'T = ' + str(T[i])
data1.append(trace1)
Tu = np.linspace(10**T_range[0], 10**T_range[1], 1000)
# Real time in days (1 cm2/s = 8.64 m2/day)
t = np.array([i*h**2/(cv * 8.64) for i in Tu])
trace2, trace3 = {}, {}
sum2 = np.zeros(len(Tu))
for k in range(1, 100):
factor2 = 1.0 / (2*k - 1)**2
sum2 += factor2 * np.exp(-1.0 * (2*k-1)**2 * (np.pi/2)**2 * Tu)
sum2 = 1 - (8/np.pi**2) * sum2
sum2 *= 100
trace2['x'] = Tu
trace2['y'] = sum2
trace2['name'] = ''
trace3['x'] = t
trace3['y'] = sum2,
trace3['name'] = ''
trace3['xaxis'] = 'x2'
data2 = [trace2, trace3]
return data1, data2