-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
253 lines (202 loc) · 8.68 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
"""
Utils for basic image processing
"""
import numpy
import scipy.ndimage
import cv2
from matplotlib import pyplot
DEFAULT_LONG_EDGE_LIMIT = 600
FLANN_INDEX_LSH = 6
ROI_RATIO = 0.5
DEPTH_MAP_SHORT_EDGE_SIZE = 400
DEFAULT_SHIFT_RANGE = (-1., 1.5) # -1 is infinity, 1.5 is empirical
DEFAULT_SUB_PIX_RATE = 1.0
def get_edges_from_triangles(triangles):
edges = []
for triangle in triangles:
a, b, c = triangle
edge0 = (a, b) if a < b else (b, a)
edge1 = (b, c) if b < c else (c, b)
edge2 = (a, c) if a < c else (c, a)
edges += [edge0, edge1, edge2]
return list(set(edges))
def limit_image_size(img, long_edge=DEFAULT_LONG_EDGE_LIMIT):
h, w = img.shape[:2]
fxy = long_edge / max(h, w)
if fxy < 1:
img = cv2.resize(img, (0, 0), fx=fxy, fy=fxy)
return img
def calibrate_rois(rois):
orb = cv2.ORB_create(nfeatures=200, nlevels=1)
index_params = dict(algorithm=FLANN_INDEX_LSH, trees=5)
search_params = dict(checks=50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
kp_n_des_list = [orb.detectAndCompute(x, None) for x in rois]
kp0, des0 = kp_n_des_list[0]
mats = []
#i = 1
for kp, des in kp_n_des_list[1:]:
matches = flann.knnMatch(des0, des, k=2)
good_matches = []
for match in matches:
if len(match) == 2 and match[0].distance < 0.6 * match[1].distance:
good_matches.append(match[0])
dst_pts = numpy.float32([kp0[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2)
src_pts = numpy.float32([kp[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2)
mat_affine = cv2.estimateRigidTransform(src_pts, dst_pts, False)
mats.append(mat_affine)
#img_matching = cv2.drawMatches(rois[0], kp0, rois[i], kp, good_matches, None, flags=2)
#pyplot.figure(i)
#pyplot.imshow(img_matching)
#i += 1
#pyplot.show()
return mats
def calibrate_images(images):
# check if images are same size
h_ref, w_ref = images[0].shape[:2]
for image in images[1:]:
h, w = image.shape[:2]
if h != h_ref or w != w_ref:
print('Bad inputs!')
return None
cx = w_ref / 2
cy = h_ref / 2
short_edge = min(h_ref, w_ref)
coeff = ROI_RATIO / 2
x0_roi = int(cx - coeff * short_edge + 0.5)
x1_roi = int(cx + coeff * short_edge + 0.5)
y0_roi = int(cy - coeff * short_edge + 0.5)
y1_roi = int(cy + coeff * short_edge + 0.5)
calib_rois = [cv2.cvtColor(x[y0_roi:y1_roi+1, x0_roi:x1_roi+1], cv2.COLOR_BGR2GRAY) for x in images]
affine_mats = calibrate_rois(calib_rois)
coords = [[0., 0.]]
for i, m in enumerate(affine_mats):
images[i + 1] = cv2.warpAffine(images[i + 1], m, (w_ref, h_ref))
coords.append([m[0][2], m[1][2]])
coords = numpy.array(coords)
mean_coord = numpy.mean(coords, axis=0)
coords = [numpy.array(x)-mean_coord for x in coords]
return images, coords
def variance_map(images):
imgs = numpy.asarray(images)
dim = len(imgs.shape)
if dim == 4:
return numpy.sum(numpy.var(imgs, axis=0), axis=2)
elif dim == 3:
return numpy.var(imgs, axis=0)
else:
return None
def cal_depth_map(images, coords, short_edge=DEPTH_MAP_SHORT_EDGE_SIZE, shift_range=DEFAULT_SHIFT_RANGE):
# check if images are same size
h_ref, w_ref = images[0].shape[:2]
for image in images[1:]:
h, w = image.shape[:2]
if h != h_ref or w != w_ref:
print('Bad inputs!')
return None
scale = short_edge / min(h_ref, w_ref)
imgs = []
if scale < 1:
for i in range(len(images)):
imgs.append(cv2.resize(images[i], (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_LINEAR))
else:
scale = 1.
dcoords = [x * scale for x in coords]
shifts = numpy.linspace(*shift_range, 100)
depth_map = numpy.zeros(imgs[0].shape[:2], dtype=numpy.float32)
min_var_map = numpy.ones(imgs[0].shape[:2], dtype=numpy.float32) * 1e9
unit_mat = numpy.array([
[1, 0],
[0, 1]
])
h0, w0 = imgs[0].shape[:2]
still_pixs = numpy.ones(depth_map.shape, dtype=numpy.uint8)
focus_measures = []
for i, shift in enumerate(shifts):
mats = [numpy.hstack([unit_mat, shift * dcoord.reshape(2, 1)]) for dcoord in dcoords]
shifted_imgs = [cv2.warpAffine(img, m, (w0, h0)) for img, m in zip(imgs, mats)]
var_map = variance_map(shifted_imgs)
prev_depth_map = depth_map.copy()
depth_map[var_map < min_var_map] = shift
if i > 0:
still_pixs[depth_map != prev_depth_map] = 0
min_var_map = numpy.min([min_var_map, var_map], axis=0)
stacked_img = numpy.mean(shifted_imgs, axis=0)
focus_measure = 0
for j in range(3):
ch_grad = cv2.Laplacian(stacked_img[:, :, j], cv2.CV_64F)
focus_measure += ch_grad.var()
focus_measures.append(focus_measure)
# Try to fix some never update pixels ...
blurred_depth_map = scipy.ndimage.median_filter(depth_map, 5)
depth_map[still_pixs == 1] = blurred_depth_map[still_pixs == 1]
depth_map = cv2.resize(depth_map, (w_ref, h_ref))
return depth_map, focus_measures
def interpolate_image(images, coords, interp_coords,
sub_pix_rate=DEFAULT_SUB_PIX_RATE,
shift_range=DEFAULT_SHIFT_RANGE):
h, w = images[0].shape[:2]
unit_mat = numpy.array([
[1, 0],
[0, 1]
])
interp_images = []
for interp_coord in interp_coords:
distances = [numpy.linalg.norm(numpy.array(interp_coord)-x) for x in coords]
num_shifts = int(numpy.mean(distances) / sub_pix_rate + 0.5) * (shift_range[1] - shift_range[0])
alphas = numpy.linspace(*shift_range, num_shifts)
# assume all images are equal size
interp_image = numpy.mean(images, axis=0)
min_diff_map = variance_map(images)
for alpha in alphas:
print(alpha)
image_stack = []
for coord, image in zip(coords, images):
m_shift = numpy.hstack([unit_mat, alpha * coord.reshape(2, 1)])
shifted_img = cv2.warpAffine(image, m_shift, (w, h))
image_stack.append(shifted_img)
diff_map = variance_map(image_stack)
mean_shifted_image = numpy.mean(image_stack, axis=0)
update_positions = numpy.where(diff_map < min_diff_map)
interp_image[update_positions] = mean_shifted_image[update_positions]
min_diff_map[update_positions] = diff_map[update_positions]
interp_images.append(interp_image)
image_name = '{}_{}.jpg'.format(*interp_coord)
cv2.imwrite(image_name, interp_image.astype(numpy.uint8))
return interp_images
def make_refocused_images(coords, images, shift_range=DEFAULT_SHIFT_RANGE):
# check if images are same size
h_ref, w_ref = images[0].shape[:2]
shifts = numpy.linspace(*shift_range, 100)
depth_map = numpy.zeros(images[0].shape[:2], dtype=numpy.float32)
min_var_map = numpy.ones(images[0].shape[:2], dtype=numpy.float32) * 1e9
unit_mat = numpy.array([
[1, 0],
[0, 1]
])
h0, w0 = images[0].shape[:2]
still_pixs = numpy.ones(depth_map.shape, dtype=numpy.uint8)
focus_measures = []
for i, shift in enumerate(shifts):
mats = [numpy.hstack([unit_mat, shift * coord.reshape(2, 1)]) for coord in coords]
shifted_imgs = [cv2.warpAffine(img, m, (w0, h0)) for img, m in zip(images, mats)]
var_map = variance_map(shifted_imgs)
prev_depth_map = depth_map.copy()
depth_map[var_map < min_var_map] = shift
if i > 0:
still_pixs[depth_map != prev_depth_map] = 0
min_var_map = numpy.min([min_var_map, var_map], axis=0)
stacked_img = numpy.mean(shifted_imgs, axis=0)
cv2.imshow('ttt', stacked_img.astype(numpy.uint8))
cv2.imwrite('refocused_{}.jpg'.format(shift), stacked_img.astype(numpy.uint8))
cv2.waitKey(10)
focus_measure = 0
for j in range(3):
ch_grad = cv2.Laplacian(stacked_img[:, :, j], cv2.CV_64F)
focus_measure += ch_grad.var()
focus_measures.append(focus_measure)
# Try to fix some never update pixels ...
blurred_depth_map = scipy.ndimage.median_filter(depth_map, 5)
depth_map[still_pixs == 1] = blurred_depth_map[still_pixs == 1]
depth_map = cv2.resize(depth_map, (w_ref, h_ref))
return depth_map, focus_measures