-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathevaluation.py
414 lines (343 loc) · 13.2 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
import os
import os.path
import json
import numpy as np
import pickle
from collections import defaultdict
from difflib import get_close_matches
from IPython import embed
from tqdm import tqdm
dataset_path = 'dataset/'
rel2id = json.load(open(dataset_path + 'meta/rel2id.json', 'r'))
id2rel = {value: key for key, value in rel2id.items()}
def cal_f1(prec, recall):
return (2*prec*recall)/(prec+recall)
def token2eid(pred, named_entities):
pred = pred.lower()
nes = ['none']
ne2eid = {'none':-1}
for i,e in enumerate(named_entities):
nes.extend(e)
for m in e:
ne2eid[m] = i
match = get_close_matches(pred, nes)[0]
match_id = ne2eid[match]
return match_id
def gen_official(tokens, features):
res = []
for i in range(preds.shape[0]):
pred_t = token2eid(preds[i], features[i]['named_entities'])
if pred_t != -1:
h,_,r = features[i]['htr']
res.append(
{
'title': features[i]['title'],
'h_idx': h,
't_idx': pred_t,
'r': rs
}
)
return res
def to_score(scores, topks, features):
h_idx, t_idx, title = [], [], []
for f in features:
if 'original_hts' in f:
hts = f['original_hts']
else:
hts = f["hts"]
h_idx += [ht[0] for ht in hts]
t_idx += [ht[1] for ht in hts]
title += [f["title"] for ht in hts]
title2scores = {}
k = topks.shape[-1]
for i in range(len(scores)):
tit, h, t = title[i], h_idx[i], t_idx[i]
score_label = [(scores[i][j], topks[i][j]) for j in range(k)]
ht_key = (h,t)
if tit not in title2scores:
title2scores[tit] = {}
if ht_key not in title2scores[tit]:
title2scores[tit][ht_key] = []
title2scores[tit][ht_key].append(score_label)
return title2scores
def extract_relative_score(scores):
# scores: [score_i, ...]; where score_i: [(score_ik, rel_ik), ...]
rel2rel_score = defaultdict(lambda: -100)
for score in scores:
na_score = score[-1][0] - 1
for s, rel in score:
if rel == 0:
na_score = s
for s, rel in score:
if rel != 0:
if rel in rel2rel_score:
rel2rel_score[rel] = max(rel2rel_score[rel], s-na_score)
else:
rel2rel_score[rel] = s-na_score
return rel2rel_score
def extract_gt(feature_path, features):
gt_file = feature_file = os.path.join(feature_path, 'title2gt.pkl' )
if os.path.exists(gt_file):
title2gt = pickle.load(open(gt_file, 'rb'))
else:
print('Extracting gt..')
title2gt = {}
for f in tqdm(features):
title = f['title']
title2gt[title] = {}
for idx,p in enumerate(f['hts']):
h,t = p
label = np.array(f['labels'][idx])
rs = np.nonzero(label[1:])[0] + 1
title2gt[title][(h,t)] = rs
print('Saving title2gt to file..')
pickle.dump(title2gt, open(gt_file, 'wb'))
return title2gt
def ensemble_scores(title2scores, title2scores2, title2gt=None, thresh=None):
assert(title2gt is not None or thresh is not None)
res = []
thresh_r_scores= []
num_fixed_correct = 0
num_fixed_pred = 0
num_gt = 0
num_pred2 = 0
for title in title2scores:
if title2gt is not None:
gt = title2gt[title]
ps = set(title2scores[title].keys())
for h,t in ps:
if title2gt is not None:
num_gt += len(gt[(h,t)])
rel2rel_score1 = extract_relative_score(title2scores[title][(h,t)])
if title not in title2scores2 or (h,t) not in title2scores2[title]:
tmp_res = [rel for rel in rel2rel_score1 if rel2rel_score1[rel] > 0]
else:
rel2rel_score2 = extract_relative_score(title2scores2[title][(h,t)])
num_pred2 += len([rel for rel in rel2rel_score2 if rel2rel_score2[rel] > 0])
rels = set(rel2rel_score1.keys()).union(set(rel2rel_score2.keys()))
rel2rel_score = {rel:rel2rel_score1[rel] + rel2rel_score2[rel] for rel in rels}
if thresh is not None:
tmp_res = [rel for rel in rels if (rel2rel_score1[rel] > 0 or rel2rel_score2[rel] > 0) and rel2rel_score[rel] >= thresh]
else:
tmp_res = []
for rel in rels:
if rel2rel_score1[rel] > 0 and rel2rel_score2[rel] > 0:
tmp_res.append(rel)
elif rel2rel_score1[rel] > 0 or rel2rel_score2[rel] > 0:
if_correct = rel in gt[(h,t)]
thresh_r_scores.append( (if_correct, rel2rel_score[rel], title, h, t, rel) )
num_fixed_pred += len(tmp_res)
for r in tmp_res:
if title2gt is not None:
if r in gt[(h,t)]:
num_fixed_correct += 1
tmp_dict = {
'title': title,
'h_idx': h,
't_idx': t,
'r': id2rel[r],
}
res.append(tmp_dict)
if thresh is not None or len(thresh_r_scores) == 0:
return res, thresh
else:
thresh = {}
print('# fixed pred:', num_fixed_pred, '# fixed correct:', num_fixed_correct, '# gt:', num_gt, '# pred2:', num_pred2)
# deal with grey area
sorted_pred = sorted(thresh_r_scores, key=lambda x:x[1], reverse=True)
correct, num_pred = num_fixed_correct, num_fixed_pred
precs, recalls = [], []
for i, item in enumerate(sorted_pred):
correct += item[0]
num_pred += 1
precs.append( correct / num_pred) # Precision
recalls.append( correct / num_gt) # Recall
recalls = np.asarray(recalls, dtype='float32')
precs = np.asarray(precs, dtype='float32')
f1_arr = (2 * recalls * precs / (recalls + precs + 1e-20))
f1 = f1_arr.max()
f1_pos = f1_arr.argmax()
thresh = sorted_pred[f1_pos][1]
print('Best thresh', thresh, '\tbest F1', f1)
for item in sorted_pred[:f1_pos]:
# add to res
tmp_dict = {
'title': item[2],
'h_idx': item[3],
't_idx': item[4],
'r': id2rel[item[5]],
}
res.append(tmp_dict)
return res, thresh
def to_official(preds, features, sen_preds=[]):
h_idx, t_idx, title = [], [], []
if len(sen_preds) > 0:
if len(sen_preds[0].shape) == 2:
if_at = True
elif len(sen_preds[0].shape) == 1:
if_at = False
for f in features:
if 'original_hts' in f:
hts = f['original_hts']
else:
hts = f["hts"]
h_idx += [ht[0] for ht in hts]
t_idx += [ht[1] for ht in hts]
title += [f["title"] for ht in hts]
if 'htbs' in f:
htbs = f['htbs']
h_idx += [ht[0][0] for ht in htbs]
t_idx += [ht[0][1] for ht in htbs]
title += [f["title"] for ht in htbs]
res = []
evi_by_title = {}
num_pairs_with_evidence = 0
for i in range(preds.shape[0]):
pred = preds[i]
pred = np.nonzero(pred)[0].tolist()
if len(sen_preds) > 0:
if if_at:
sen_pred = sen_preds[i] # sen_preds[i]: [num_sents, num_rels] or [num_sents]
sen_pred = np.nonzero( np.sum(sen_pred[:,1:], axis=-1) )[0].tolist()
else:
sen_pred = np.nonzero(sen_preds[i])[0].tolist()
if len(sen_pred) > 0:
h,t,tit = h_idx[i], t_idx[i], title[i]
if tit not in evi_by_title:
evi_by_title[tit] = {}
evi_by_title[tit][(h,t)] = sen_pred
num_pairs_with_evidence += 1
for idx, p in enumerate(pred):
if p != 0:
tmp_dict = {
'title': title[i],
'h_idx': h_idx[i],
't_idx': t_idx[i],
'r': id2rel[p],
}
if len(sen_preds) > 0:
tmp_dict['evidence'] = sen_pred
res.append(tmp_dict)
if len(sen_preds) > 0:
print('num of pairs with evidence:', num_pairs_with_evidence)
if len(evi_by_title) > 0:
return res, evi_by_title
else:
return res
def gen_train_facts(data_file_name, truth_dir):
fact_file_name = data_file_name[data_file_name.find("train_"):]
fact_file_name = os.path.join(truth_dir, fact_file_name.replace(".json", ".fact"))
if os.path.exists(fact_file_name):
fact_in_train = set([])
triples = json.load(open(fact_file_name))
for x in triples:
fact_in_train.add(tuple(x))
return fact_in_train
fact_in_train = set([])
ori_data = json.load(open(data_file_name))
for data in ori_data:
vertexSet = data['vertexSet']
for label in data['labels']:
rel = label['r']
for n1 in vertexSet[label['h']]:
for n2 in vertexSet[label['t']]:
fact_in_train.add((n1['name'], n2['name'], rel))
json.dump(list(fact_in_train), open(fact_file_name, "w"))
return fact_in_train
def official_evaluate(tmp, path, tot_rel = -1, mode='dev'):
'''
Adapted from the official evaluation code
'''
truth_dir = os.path.join(path, 'ref')
if not os.path.exists(truth_dir):
os.makedirs(truth_dir)
fact_in_train_annotated = gen_train_facts(os.path.join(path, "train_annotated.json"), truth_dir)
fact_in_train_distant = gen_train_facts(os.path.join(path, "train_distant.json"), truth_dir)
if mode == 'dev':
truth = json.load(open(os.path.join(path, "dev.json")))
elif mode == 'train':
truth = json.load(open(os.path.join(path, "train_annotated.json")))
std = {}
tot_evidences = 0
titleset = set([])
title2vectexSet = {}
for x in truth:
title = x['title']
titleset.add(title)
vertexSet = x['vertexSet']
title2vectexSet[title] = vertexSet
for label in x['labels']:
r = label['r']
h_idx = label['h']
t_idx = label['t']
std[(title, r, h_idx, t_idx)] = set(label['evidence'])
tot_evidences += len(label['evidence'])
tot_relations = len(std)
tmp.sort(key=lambda x: (x['title'], x['h_idx'], x['t_idx'], x['r']))
submission_answer = [tmp[0]]
for i in range(1, len(tmp)):
x = tmp[i]
y = tmp[i - 1]
# delete redundant items
if (x['title'], x['h_idx'], x['t_idx'], x['r']) != (y['title'], y['h_idx'], y['t_idx'], y['r']):
submission_answer.append(tmp[i])
correct_re = 0
correct_evidence = 0
pred_evi = 0
correct_in_train_annotated = 0
correct_in_train_distant = 0
titleset2 = set([])
for x in submission_answer:
title = x['title']
h_idx = x['h_idx']
t_idx = x['t_idx']
r = x['r']
titleset2.add(title)
if title not in title2vectexSet:
continue
vertexSet = title2vectexSet[title]
if 'evidence' in x:
evi = set(x['evidence'])
else:
evi = set([])
pred_evi += len(evi)
if (title, r, h_idx, t_idx) in std:
correct_re += 1
stdevi = std[(title, r, h_idx, t_idx)]
correct_evidence += len(stdevi & evi)
in_train_annotated = in_train_distant = False
for n1 in vertexSet[h_idx]:
for n2 in vertexSet[t_idx]:
if (n1['name'], n2['name'], r) in fact_in_train_annotated:
in_train_annotated = True
if (n1['name'], n2['name'], r) in fact_in_train_distant:
in_train_distant = True
if in_train_annotated:
correct_in_train_annotated += 1
if in_train_distant:
correct_in_train_distant += 1
if tot_rel > 0:
tot_relations = tot_rel
re_p = 1.0 * correct_re / len(submission_answer)
re_r = 1.0 * correct_re / tot_relations
if re_p + re_r == 0:
re_f1 = 0
else:
re_f1 = 2.0 * re_p * re_r / (re_p + re_r)
evi_p = 1.0 * correct_evidence / pred_evi if pred_evi > 0 else 0
evi_r = 1.0 * correct_evidence / tot_evidences
if evi_p + evi_r == 0:
evi_f1 = 0
else:
evi_f1 = 2.0 * evi_p * evi_r / (evi_p + evi_r)
re_p_ignore_train_annotated = 1.0 * (correct_re - correct_in_train_annotated) / (len(submission_answer) - correct_in_train_annotated + 1e-5)
re_p_ignore_train = 1.0 * (correct_re - correct_in_train_distant) / (len(submission_answer) - correct_in_train_distant + 1e-5)
if re_p_ignore_train_annotated + re_r == 0:
re_f1_ignore_train_annotated = 0
else:
re_f1_ignore_train_annotated = 2.0 * re_p_ignore_train_annotated * re_r / (re_p_ignore_train_annotated + re_r)
if re_p_ignore_train + re_r == 0:
re_f1_ignore_train = 0
else:
re_f1_ignore_train = 2.0 * re_p_ignore_train * re_r / (re_p_ignore_train + re_r)
return re_f1, evi_f1, re_f1_ignore_train_annotated, re_f1_ignore_train