-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathMGCN_SCAPE.py
247 lines (211 loc) · 9.72 KB
/
MGCN_SCAPE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import os
import os.path as osp
import argparse
import numpy as np
import gc
import torch
import torch.nn.functional as F
from datasets.scape_wavelet import SCAPE_WAVELET
import torch_geometric.transforms as T
from torch_geometric.data import DataLoader, DataListLoader
from nn.losses import loss_HardNet
from nn.mgconv import MGConv
parser = argparse.ArgumentParser(description='')
parser.add_argument('--use_cpu', '--uc', dest='use_cpu',default=False, action='store_true',
help='bool value, use gpu or not')
parser.add_argument('--gpuid', '-g', default='0', type=str, metavar='N',
help='GPU id to run')
parser.add_argument('--learning_rate_softmax', '--lrs', default=0.001, type=float,
help='the learning rate')
parser.add_argument('--weight_decay_softmax', '--wds', default=1e-4, type=float,
help='the weight decay')
parser.add_argument('--learning_rate_hardloss', '--lrh', default=5e-5, type=float,
help='the learning rate')
parser.add_argument('--weight_decay_hardloss', '--wdh', default=5e-5, type=float,
help='the weight decay')
parser.add_argument('--epoch_softmax', '--es', default=200, type=int,metavar='N',
help='the number of training iterations with softmax loss')
parser.add_argument('--epoch_hardloss', '--eh', default=100, type=int,metavar='N',
help='the number of training iterations with hardnet loss')
parser.add_argument('--input_desc_dims', '--idd', default=128, type=int,
help='the number of dimensions in input descriptors')
parser.add_argument('--output_desc_dims', '--odd', default=256, type=int,
help='the number of dimensions in output descriptors')
parser.add_argument('--wavelet_scales', '--ws', default=16, type=int,
help='the number of wavelet scales.')
parser.add_argument('--n_corr_points', default=5000, type=int,
help='the number of corresponding points')
parser.add_argument('--save_freq', '--sf', default=100, type=int,
help=r'save the current trained model every {save_freq} iterations')
parser.add_argument('--saving_name', '--sn', default='mgcn_scape', type=str,
help='the name of trained models and the name of directory to save output descriptors')
parser.add_argument('--loading_name', '--ln', default='mgcn_scape-300', type=str,
help='the name of loaded model and the name of directory to generate descriptors using the loaded model')
parser.add_argument('--load', '-l', dest='load',default=False, action='store_true',
help='bool value, load variables from saved model or not')
parser.add_argument('--generate_desc', '--gd', dest='generate_desc',default=False, action='store_true',
help='bool value, generating descriptors using loaded model')
args = parser.parse_args()
USE_GPU = not args.use_cpu
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpuid
os.environ['CUDA_LAUNCH_BLOCKING'] = "1"
torch.backends.cudnn.benchmark = True
LOAD = args.load # True
GEN = args.generate_desc # True
TRIPLET = False
EPOCH_softmax = args.epoch_softmax
EPOCH_hardloss = args.epoch_hardloss
K = args.wavelet_scales + 1
SAVE_NAME = args.saving_name
CPOINT_NAME = args.loading_name
LEARNING_RATE=args.learning_rate_softmax
WEIGHT_DECAY=args.weight_decay_softmax
path = osp.join(osp.dirname(osp.realpath(__file__)), 'datasets', 'Scape')
path_output = osp.join(osp.abspath('.'), 'outputs', SAVE_NAME)
if not os.path.exists(path_output):
os.makedirs(path_output)
LOG_FOUT = open(path_output + '/log.out', 'w')
pre_transform = T.FaceToEdge()
train_dataset = SCAPE_WAVELET(path, True, None, pre_transform)
test_dataset = SCAPE_WAVELET(path, False, None, pre_transform)
train_loader = DataLoader(train_dataset, batch_size=1, shuffle=True)
train_loader_tri = DataListLoader(train_dataset, batch_size=2, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=1, shuffle=False)
d = test_dataset[0]
d.num_nodes = args.n_corr_points
class L2Norm(torch.nn.Module):
def __init__(self):
super(L2Norm,self).__init__()
# self.eps = 1e-10
def forward(self, x):
norm = torch.sqrt(torch.sum(x * x, dim = 1)) # + self.eps
x= x / norm.unsqueeze(-1).expand_as(x)
return x
class FMaxMin(torch.nn.Module):
def __init__(self):
super(FMaxMin,self).__init__()
def forward(self, x):
min = torch.min(x, dim=0)[0]
max = torch.max(x, dim=0)[0]
ran = max - min
x= (x - min.unsqueeze(0).expand_as(x)) / ran.unsqueeze(0).expand_as(x)
return x
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = MGConv(args.input_desc_dims, 96, K=K, bias=False)
self.conv2 = MGConv(96, 96, K=K, bias=False)
self.conv3 = MGConv(96, 96, K=K, bias=False)
self.conv4 = MGConv(96, 96, K=K, bias=False)
self.conv5 = MGConv(96, 96, K=K, bias=False)
self.conv6 = MGConv(96, 128, K=K, bias=False)
self.fc1 = torch.nn.Linear(128, args.output_desc_dims)
self.fc2 = torch.nn.Linear(args.output_desc_dims, d.num_nodes)
def forward(self, data):
x, V, A, D, clk = data.x, data.V, data.A, data.D, data.clk
list = []
for k in range(31, -1, -(32//(K-1))):
Win = torch.mm(torch.mm(torch.mm(V, torch.diag(clk[:, k])), torch.t(V)), torch.diag(torch.squeeze(A))) ** 2
Win = torch.nn.functional.normalize(Win, p=2, dim=0) ** 2
list.append(Win)
Win = torch.stack(list, dim=0)
torch.cuda.empty_cache()
x = FMaxMin()(x)
x = self.conv1(x, Win)
x = F.elu(x)
x = FMaxMin()(x)
x = self.conv2(x, Win)
x = F.elu(x)
x = FMaxMin()(x)
x = self.conv3(x, Win)
x = F.elu(x)
x = FMaxMin()(x)
x = self.conv4(x, Win)
x = F.elu(x)
x = FMaxMin()(x)
x = self.conv5(x, Win)
x = F.elu(x)
x = FMaxMin()(x)
x = self.conv6(x, Win)
x = F.elu(x)
x = FMaxMin()(x)
des = F.elu(self.fc1(x))
x = F.dropout(des, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1), des
device_type = 'cuda' if torch.cuda.is_available() and USE_GPU else 'cpu'
device = torch.device(device_type)
model = Net().to(device)
target = torch.arange(d.num_nodes, dtype=torch.long, device=device)
optimizer = torch.optim.Adam(model.parameters(), lr = LEARNING_RATE, weight_decay = WEIGHT_DECAY) # 0.01 softmax: lr=0.001, weight_decay=5e-4 triplet: lr=0.0001, weight_decay=5e-5 cheb lr=0.0005, weight_decay=1e-4
def train(epoch):
model.train()
if TRIPLET:
loss_value = 0.0
count = 0
for data in train_loader_tri:
if len(data)==2:
data2 = data.copy()
data_a = data2[0] # Batch.from_data_list([])
data_p = data2[1] # Batch.from_data_list([data[1]])
out_a = model(data_a.to(device))[1][data_a.map, :]
out_p = model(data_p.to(device))[1][data_p.map, :]
optimizer.zero_grad()
loss = loss_HardNet(out_a, out_p, anchor_swap=True) # =False , batch_reduce='average')
loss.backward()
optimizer.step()
loss_value = loss_value + loss.item()
count = count + 1
gc.collect()
print('Epoch: {:02d}, Loss: {:.4f}'.format(epoch, loss_value / count))
LOG_FOUT.write('Epoch: {:02d}, Loss: {:.4f}'.format(epoch, loss_value / count) + '\n')
LOG_FOUT.flush()
else:
loss_value = 0.0
count = 0
flag = True
for data in train_loader:
optimizer.zero_grad()
if flag:
x, des = model(data.to(device)) # , nloss
loss=F.nll_loss(x[data.map, :], target) # + 1e-2*nloss
loss.backward()
optimizer.step()
loss_value = loss_value + loss.item()
count = count + 1
gc.collect()
print('Epoch: {:02d}, Loss: {:.4f}'.format(epoch, loss_value / count))
LOG_FOUT.write('Epoch: {:02d}, Loss: {:.4f}'.format(epoch, loss_value / count) + '\n')
LOG_FOUT.flush()
if LOAD:
model.load_state_dict(torch.load(osp.join(osp.abspath('.'), 'checkpoints', CPOINT_NAME + '.pth'), map_location=device_type))
EPOCH = EPOCH_softmax + EPOCH_hardloss
for epoch in range(1, EPOCH+1):
if GEN:
path_gen = osp.join(osp.abspath('.'), 'outputs', CPOINT_NAME)
if not os.path.exists(path_gen):
os.makedirs(path_gen)
txt_path = osp.join(path_gen, 'mesh{0:03d}.txt')
for data in test_loader:
desc = model(data.to(device))[1]
descriptor = desc.cpu().detach().numpy()
i = int(data.name.cpu().detach())
np.savetxt(txt_path.format(i), descriptor, fmt='%.6e')
torch.cuda.empty_cache()
gc.collect()
break
if epoch > EPOCH_softmax:
TRIPLET = True
LEARNING_RATE = args.learning_rate_hardloss
WEIGHT_DECAY = args.weight_decay_hardloss
optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE, weight_decay=WEIGHT_DECAY)
train(epoch)
if epoch % args.save_freq == 0:
torch.save(model.state_dict(), osp.join(osp.abspath('.'), 'checkpoints', SAVE_NAME + str(-epoch) + '.pth'))
txt_path = osp.join(osp.abspath('.'), 'outputs', SAVE_NAME, 'mesh{0:03d}.txt')
for data in test_loader:
desc = model(data.to(device))[1]
descriptor = desc.cpu().detach().numpy()
i = int(data.name.cpu().detach())
np.savetxt(txt_path.format(i), descriptor, fmt='%.6e')
LOG_FOUT.close()