-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdecision_tree.py
46 lines (40 loc) · 1.79 KB
/
decision_tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import pandas as pd
import os
from sklearn import model_selection, metrics
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split, cross_val_score, ShuffleSplit
from sklearn.metrics import recall_score, precision_score, f1_score, roc_auc_score
from sklearn.preprocessing import StandardScaler
from imblearn.over_sampling import SMOTE
from pcfm import plot_confusion_matrix
import numpy as np
import matplotlib.pyplot as plt
import preprocess
import evaluation
# Load data set
df = pd.read_csv("./HTRU_2.csv", hearer=None)
X = df.iloc[:,:-1]
y = df.iloc[:,-1:].values
# Normalization
normalizer = StandardScaler()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, stratify=y, random_state=42)
X_train = normalizer.fit_transform(X_train)
X_test = normalizer.transform(X_test)
X_train, y_train = preprocess.upsampling(X_train, y_train, ratio=1/5)
# Train model with fine-tuned parameters
dt = DecisionTreeClassifier(max_depth=22, min_samples_split=2, min_samples_leaf=2, random_state=95)
clf_dt = dt.fit(X_train, y_train)
# Cross validation
cv = ShuffleSplit(n_splits=5, test_size=0.3, random_state=95)
res = {}
for scoring in ('f1', 'roc_auc', 'precision', 'recall'):
res[scoring] = cross_val_score(clf_dt, X_test, y_test, cv=cv, scoring=scoring, n_jobs=-1)
print(res['f1'].mean(), res['roc_auc'].mean(), res['precision'].mean(), res['recall'].mean())
# Final result for training set and test set
print(evaluation.test_score(clf_dt, X_train, y_train))
print(evaluation.test_score(clf_dt, X_test, y_test))
# Plot confusion
cmyy = metrics.confusion_matrix(y_test, y_pred)
metcm = [cmyy]
plot_confusion_matrix(np.mean(metcm,axis=0), ['RFI','PULSAR'], cmap=plt.cm.RdPu, title='Decision Tree', colmap=True)
plt.show()