-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathbi_rnn.py
51 lines (47 loc) · 2.06 KB
/
bi_rnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from tensorflow.models.rnn import rnn_cell
from tensorflow.python.ops import control_flow_ops
def bi_rnn(cell_forward, cell_backward, inputs, initial_state=None,
dtype=None, scope=None, reuse=False):
if not (isinstance(cell_forward, rnn_cell.RNNCell) and
isinstance(cell_backward, rnn_cell.RNNCell)):
raise TypeError("cell must be an instance of RNNCell")
if not isinstance(inputs, list):
raise TypeError("inputs must be a list")
if not inputs:
raise ValueError("inputs must not be empty")
outputs = []
states = []
with tf.variable_scope(scope or "RNN"):
batch_size = tf.shape(inputs[0])[0]
outputs_f = [0] * len(inputs)
states_f = [0] * len(inputs)
outputs_b = [0] * len(inputs)
states_b = [0] * len(inputs)
if initial_state is not None:
state_f = initial_state
state_b = initial_state
else:
if not dtype:
raise ValueError("If no initial_state is provided, \
dtype must be.")
state_f = cell_forward.zero_state(batch_size, dtype)
state_b = cell_backward.zero_state(batch_size, dtype)
for t, input_ in enumerate(inputs):
if reuse or t > 0:
tf.get_variable_scope().reuse_variables()
output_f, state_f = cell_forward(inputs[t], state_f,
scope='LSTM_f')
output_b, state_b = cell_backward(inputs[-1 - t], state_b,
scope='LSTM_b')
outputs_f[t] = output_f
outputs_b[-1 - t] = output_b
states_f[t] = state_f
states_b[-1 - t] = state_b
for t in range(len(inputs)):
outputs.append(tf.concat(1, [outputs_f[t], outputs_b[t]]))
states.append(tf.concat(1, [states_f[t], states_b[t]]))
return (outputs, states)