-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
578 lines (472 loc) · 17.7 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
# Main Reference
# - Lm-BFF: https://github.com/princeton-nlp/LM-BFF
# - SFLM: https://github.com/MatthewCYM/SFLM
import dataclasses
import logging
import os
from dataclasses import dataclass, field
from typing import Callable, Dict, Optional
import torch
import numpy as np
from transformers import AutoConfig, AutoTokenizer, EvalPrediction
from transformers import GlueDataTrainingArguments as DataTrainingArguments
from transformers import HfArgumentParser, TrainingArguments
from src.dataset import FewShotDataset
from src.models import RobertaForPromptFinetuning
from src.trainer import Trainer
from src.processors import num_labels_mapping, output_modes_mapping, compute_metrics_mapping
from src.utils import set_seed
from datetime import datetime
logger = logging.getLogger(__name__)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
)
few_shot_type: str = field(
default='prompt',
metadata={"help": "prompt-based fine-tuning. 'prompt'"}
)
mav_hidden_dim: int = field(
default=256,
metadata={"help": "Dimension of vocab extractor"}
)
return_mask_rep: bool = field(
default=False,
metadata={"help": "Whether return mask representation or not"}
)
soft_verb: bool = field(
default=False,
metadata={"help": "Whether train soft verbalizer(baseline) or not"}
)
@dataclass
class DynamicDataTrainingArguments(DataTrainingArguments):
"""
Arguments for dynamic training.
"""
num_k: Optional[int] = field(
default=16,
metadata={"help": "Number of training instances per class"}
)
num_sample: Optional[int] = field(
default=1,
metadata={"help": "Number of samples (for inference) in fine-tuning with demonstrations"}
)
# --- For prompting ---
template: str = field(
default=None,
metadata={"help": "Template"}
)
mapping: str = field(
default=None,
metadata={"help": "Label word mapping"}
)
# ---
# For logging
tag: str = field(
default='',
metadata={"help": "Set the tag and find the result easier in the log."}
)
debug_mode: bool = field(
default=False,
metadata={"help": "Debug mode"}
)
# --- For max length ---
first_sent_limit: int = field(
default=None,
metadata={"help": "Limit the length of the first sentence (i.e., sent_0)"}
)
other_sent_limit: int = field(
default=None,
metadata={"help": "Limit the length of sentences other than the first sentence"}
)
truncate_head: bool = field(
default=False,
metadata={"help": "When exceeding the maximum length, truncate the head instead of the tail."}
)
# ---
# Do not set up the following fields. They are set up automatically.
prompt: bool = field(
default=False,
metadata={"help": "Whether to use prompt-based fine-tuning"}
)
template_list: list = field(
default=None,
metadata={"help": "(DO NOT List of templates (only initialized after the program starts."}
)
@dataclass
class DynamicTrainingArguments(TrainingArguments):
# Unify total train epoch, eval step
eval_nums: int = field(
default=20,
metadata={"help": "total nums of evaluation during training"}
)
# --- For flexmatch(CPL; Curriculum Pseudo Labeling) ---
is_cpl: bool = field(
default=False,
metadata={"help": "whether to use CPL(Curriculum Pseudo Labeling) or not"}
)
thresh_warmup: bool = field(
default=False,
metadata={"help": "whether to use threshold warmup or not"}
)
# ---
# --- For baseline(sup) ---
base_mode: str = field(
default=None,
metadata={"help": "'sup'(supervised) or 'ssl'(semi-supervised)"}
)
train_type: str = field(
default=None,
metadata={"help": "'full_train'(full) or 'train'(small)"}
)
# ---
# --- For wandb logging ---
wandb_project: str = field(
default='SFLM',
metadata={"help": "wandb project name"}
)
wandb_entity: str = field(
default='text-ssl',
metadata={"help": "wandb entity name"}
)
wandb_group: str = field(
default=None,
metadata={"help": "wandb group name"}
)
# ---
save_at_last: bool = field(
default=False,
metadata={"help": "save the last checkpoint"}
)
no_train: bool = field(
default=False,
metadata={"help": "No training"}
)
no_predict: bool = field(
default=False,
metadata={"help": "No test"}
)
# --- St Loss ---
lam1: float = field(
default=1,
metadata={"help": "weight of self-training loss"}
)
use_st_loss: bool = field(
default=False
)
st_loss_type: str = field(
default="fix_sflm",
metadata={"help": "vanilla or fix_sflm or flex_cpl"}
)
threshold: float = field(
default=0.95,
metadata={"help": "threshold of including self-training loss"}
)
# ---
# --- MLM Loss ---
lam2: float = field(
default=1,
metadata={"help": "weight of self-supervised loss"}
)
use_mlm_loss: bool = field(
default=False
)
# ---
# auxiliary loss - re-weight st_loss
reweight: bool = field(
default=False
)
# auxiliary loss - similarity loss
sim_loss: str = field(
default="none",
metadata={"help": "type of similarity loss btw weak/strong representations"}
) # "cos"
# --- single aug ---
single_aug: bool = field(
default=False,
metadata={"help": "Whether to use single aug"}
)
single_aug_type: str = field(
default=None,
metadata={"help": "name of single augmentation"}
)
aug_mask_ratio: float = field(
default=0.15,
metadata={"help": "random masking ratio for augmentation"}
)
# ---
# --- random aug ---
randaug: bool = field(
default=False,
metadata={"help": "Whether to use randaug"}
)
randaug_record_path: str = field(
default=None,
metadata={"help": "directory to save randaug_record_path"}
)
# ---
# --- autoaug (DND) ---
autoaug: bool = field(
default=False,
metadata={"help": "Whether to use autoaug"}
)
policy_temp: float = field(
default=0.05,
metadata={"help": "temperature for policy update"}
)
policy_lr: float = field(
default=1e-3,
metadata={"help": "learning rate for policy update"}
)
policy_update_step: int = field(
default=1,
metadata={"help": "update frequency of policy network"}
)
lambda_policy_task: float = field(
default=1.0,
metadata={"help": "learning rate for policy update"}
)
lambda_policy_sim: float = field(
default=1.0,
metadata={"help": "learning rate for policy update"}
)
# ---
# --- parameter freeze ---
lm_freeze: bool = field(
default=False,
metadata={"help": "whether to freeze parameters of lm head / model"}
)
freeze_type: str = field(
default="lmhead",
metadata={"help": "type of param freeze"}
)
# ---
def main():
# Load arguments
parser = HfArgumentParser((ModelArguments, DynamicDataTrainingArguments, DynamicTrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if 'prompt' in model_args.few_shot_type:
data_args.prompt = True
training_args.k = data_args.num_k
if training_args.no_train:
training_args.do_train = False
if training_args.no_predict:
training_args.do_predict = False
if not os.path.exists(training_args.output_dir):
os.makedirs(training_args.output_dir)
# Set additional arguments
training_args.wandb_name = f"{training_args.output_dir.split('/')[1]}-{training_args.seed}"
training_args.output_dir = f"{training_args.output_dir}/seed{training_args.seed}"
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
)
# Check save path
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(f"Output directory ({training_args.output_dir}) already exists.")
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
training_args.local_rank,
training_args.device,
training_args.n_gpu,
bool(training_args.local_rank != -1),
training_args.fp16,
)
logger.info("Training/evaluation parameters %s", training_args)
# Set seed
set_seed(training_args.seed)
try:
num_labels = num_labels_mapping[data_args.task_name]
output_mode = output_modes_mapping[data_args.task_name]
logger.info("Task name: {}, number of labels: {}, output mode: {}".format(data_args.task_name, num_labels, output_mode))
except KeyError:
raise ValueError("Task not found: %s" % (data_args.task_name))
# Create config
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
num_labels=num_labels,
finetuning_task=data_args.task_name,
cache_dir=model_args.cache_dir,
)
config.mav_hidden_dim = model_args.mav_hidden_dim
config.return_mask_rep = model_args.return_mask_rep
config.soft_verb = model_args.soft_verb
# Create tokenizer
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
)
# Get datasets
print(f">>>>> [Dataset Info]")
if training_args.base_mode == "sup":
train_dataset = (
FewShotDataset(data_args, tokenizer=tokenizer, mode=training_args.train_type, base_mode=training_args.base_mode)
)
unlabeled_dataset = None
print(f">>>>> train: {len(train_dataset)}, unlabeled: None")
else:
train_dataset = (
FewShotDataset(data_args, tokenizer=tokenizer, mode="train")
)
unlabeled_dataset = (
FewShotDataset(data_args, tokenizer=tokenizer, mode="unlabeled")
)
print(f">>>>> train: {len(train_dataset)}, unlabeled: {len(unlabeled_dataset)}")
eval_dataset = (
FewShotDataset(data_args, tokenizer=tokenizer, mode="dev")
if training_args.do_eval
else None
)
test_dataset = (
FewShotDataset(data_args, tokenizer=tokenizer, mode="test")
if training_args.do_predict
else None
)
print(f">>>>> valid: {len(eval_dataset)}, test: {len(test_dataset)}")
# Get Model
model_fn = RobertaForPromptFinetuning
model = model_fn.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
)
if data_args.prompt:
model.label_word_list = torch.tensor(train_dataset.label_word_list).long().cuda()
model.model_args = model_args
model.data_args = data_args
model.tokenizer = tokenizer
if training_args.lm_freeze:
if training_args.freeze_type == "lmhead":
for name, child in model.named_children():
for param in child.parameters():
if name=='lm_head':
param.requires_grad = False
elif training_args.freeze_type == "model":
for name, child in model.named_children():
for param in child.parameters():
if name == 'roberta':
param.requires_grad = False
# Build metric
def build_compute_metrics_fn(task_name: str) -> Callable[[EvalPrediction], Dict]:
def compute_metrics_fn(p: EvalPrediction):
# Note: the eval dataloader is sequential, so the examples are in order.
# We average the logits over each sample for using demonstrations.
predictions = p.predictions[0]
num_logits = predictions.shape[-1]
logits = predictions.reshape([eval_dataset.num_sample, -1, num_logits])
logits = logits.mean(axis=0)
if num_logits == 1:
preds = np.squeeze(logits)
else:
preds = np.argmax(logits, axis=1)
# Just for sanity, assert label ids are the same.
label_ids = p.label_ids.reshape([eval_dataset.num_sample, -1])
label_ids_avg = label_ids.mean(axis=0)
label_ids_avg = label_ids_avg.astype(p.label_ids.dtype)
assert (label_ids_avg - label_ids[0]).mean() < 1e-2
label_ids = label_ids[0]
return compute_metrics_mapping[task_name](task_name, preds, label_ids)
return compute_metrics_fn
training_args.data_dir = data_args.data_dir
# Initialize our Trainer
trainer = Trainer(
model=model,
tokenizer=tokenizer,
args=training_args,
train_dataset=train_dataset,
unlabeled_dataset=unlabeled_dataset,
eval_dataset=eval_dataset,
compute_metrics=build_compute_metrics_fn(data_args.task_name)
)
# Training
if training_args.do_train:
trainer.train(model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None)
# Use the early stop, so do not save the model in the end (unless specify save_at_last)
if training_args.save_at_last:
trainer.save_model(training_args.output_dir)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir)
torch.save(model_args, os.path.join(training_args.output_dir, "model_args.bin"))
torch.save(data_args, os.path.join(training_args.output_dir, "data_args.bin"))
# Reload the best checkpoint (for eval)
model = model_fn.from_pretrained(training_args.output_dir)
model = model.to(training_args.device)
trainer.model = model
if data_args.prompt:
model.label_word_list = torch.tensor(train_dataset.label_word_list).long().cuda()
model.model_args = model_args
model.data_args = data_args
model.tokenizer = tokenizer
# Evaluation
final_result = {
'time': str(datetime.today()),
}
# eval
eval_results = {}
if training_args.do_eval:
logger.info("*** Validate ***")
eval_datasets = [eval_dataset]
for eval_dataset in eval_datasets:
trainer.compute_metrics = build_compute_metrics_fn(eval_dataset.args.task_name)
output = trainer.evaluate(eval_dataset=eval_dataset)
eval_result = output.metrics
output_eval_file = os.path.join(
training_args.output_dir, f"eval_results_{eval_dataset.args.task_name}.txt"
)
if trainer.is_world_master():
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results {} *****".format(eval_dataset.args.task_name))
for key, value in eval_result.items():
logger.info(" %s = %s", key, value)
writer.write("%s = %s\n" % (key, value))
final_result[eval_dataset.args.task_name + '_dev_' + key] = value
eval_results.update(eval_result)
# test
test_results = {}
if training_args.do_predict:
logging.info("*** Test ***")
test_datasets = [test_dataset]
if data_args.task_name == "mnli":
mnli_mm_data_args = dataclasses.replace(data_args, task_name="mnli-mm")
test_datasets.append(
FewShotDataset(mnli_mm_data_args, tokenizer=tokenizer, mode="test")
)
for test_dataset in test_datasets:
trainer.compute_metrics = build_compute_metrics_fn(test_dataset.args.task_name)
output = trainer.evaluate(eval_dataset=test_dataset)
test_result = output.metrics
output_test_file = os.path.join(
training_args.output_dir, f"test_results_{test_dataset.args.task_name}.txt"
)
if trainer.is_world_master():
with open(output_test_file, "w") as writer:
logger.info("***** Test results {} *****".format(test_dataset.args.task_name))
for key, value in test_result.items():
logger.info(" %s = %s", key, value)
writer.write("%s = %s\n" % (key, value))
final_result[test_dataset.args.task_name + '_test_' + key] = value
test_results.update(test_result)
return eval_results
if __name__ == "__main__":
main()