forked from LeePleased/StackPropagation-SLU
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
90 lines (74 loc) · 3.28 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
"""
@Author : Lee, Qin
@StartTime : 2018/08/13
@Filename : train.py
@Software : Pycharm
@Framework : Pytorch
@LastModify : 2019/05/07
"""
from utils.module import ModelManager
from utils.loader import DatasetManager
from utils.process import Processor
import torch
import os
import json
import random
import argparse
import numpy as np
parser = argparse.ArgumentParser()
# Training parameters.
parser.add_argument('--data_dir', '-dd', type=str, default='data/atis')
parser.add_argument('--save_dir', '-sd', type=str, default='save')
parser.add_argument("--random_state", '-rs', type=int, default=0)
parser.add_argument('--num_epoch', '-ne', type=int, default=300)
parser.add_argument('--batch_size', '-bs', type=int, default=16)
parser.add_argument('--l2_penalty', '-lp', type=float, default=1e-6)
parser.add_argument("--learning_rate", '-lr', type=float, default=0.001)
parser.add_argument('--dropout_rate', '-dr', type=float, default=0.4)
parser.add_argument('--intent_forcing_rate', '-ifr', type=float, default=0.9)
parser.add_argument("--differentiable", "-d", action="store_true", default=False)
parser.add_argument('--slot_forcing_rate', '-sfr', type=float, default=0.9)
# model parameters.
parser.add_argument('--word_embedding_dim', '-wed', type=int, default=64)
parser.add_argument('--encoder_hidden_dim', '-ehd', type=int, default=256)
parser.add_argument('--intent_embedding_dim', '-ied', type=int, default=8)
parser.add_argument('--slot_embedding_dim', '-sed', type=int, default=32)
parser.add_argument('--slot_decoder_hidden_dim', '-sdhd', type=int, default=64)
parser.add_argument('--intent_decoder_hidden_dim', '-idhd', type=int, default=64)
parser.add_argument('--attention_hidden_dim', '-ahd', type=int, default=1024)
parser.add_argument('--attention_output_dim', '-aod', type=int, default=128)
if __name__ == "__main__":
args = parser.parse_args()
# Save training and model parameters.
if not os.path.exists(args.save_dir):
os.system("mkdir -p " + args.save_dir)
log_path = os.path.join(args.save_dir, "param.json")
with open(log_path, "w") as fw:
fw.write(json.dumps(args.__dict__, indent=True))
# Fix the random seed of package random.
random.seed(args.random_state)
np.random.seed(args.random_state)
# Fix the random seed of Pytorch when using GPU.
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args.random_state)
torch.cuda.manual_seed(args.random_state)
# Fix the random seed of Pytorch when using CPU.
torch.manual_seed(args.random_state)
torch.random.manual_seed(args.random_state)
# Instantiate a dataset object.
dataset = DatasetManager(args)
dataset.quick_build()
dataset.show_summary()
# Instantiate a network model object.
model = ModelManager(
args, len(dataset.word_alphabet),
len(dataset.slot_alphabet),
len(dataset.intent_alphabet))
model.show_summary()
# To train and evaluate the models.
process = Processor(dataset, model, args.batch_size)
process.train()
print('\nAccepted performance: ' + str(Processor.validate(
os.path.join(args.save_dir, "model/model.pkl"),
os.path.join(args.save_dir, "model/dataset.pkl"),
args.batch_size)) + " at test dataset;\n")