-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathdataset.py
162 lines (137 loc) · 5.62 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import torch
import numpy as np
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from utils import utils
from transformers import BertTokenizer
from utils.bio import pred_tag2idx, arg_tag2idx
def load_data(data_path,
batch_size,
max_len=64,
train=True,
tokenizer_config='bert-base-cased'):
if train:
return DataLoader(
dataset=OieDataset(
data_path,
max_len,
tokenizer_config),
batch_size=batch_size,
shuffle=True,
num_workers=4,
pin_memory=True,
drop_last=True)
else:
return DataLoader(
dataset=OieEvalDataset(
data_path,
max_len,
tokenizer_config),
batch_size=batch_size,
num_workers=4,
pin_memory=True)
class OieDataset(Dataset):
def __init__(self, data_path, max_len=64, tokenizer_config='bert-base-cased'):
data = utils.load_pkl(data_path)
self.tokens = data['tokens']
self.single_pred_labels = data['single_pred_labels']
self.single_arg_labels = data['single_arg_labels']
self.all_pred_labels = data['all_pred_labels']
self.max_len = max_len
self.tokenizer = BertTokenizer.from_pretrained(tokenizer_config)
self.vocab = self.tokenizer.vocab
self.pad_idx = self.vocab['[PAD]']
self.cls_idx = self.vocab['[CLS]']
self.sep_idx = self.vocab['[SEP]']
self.mask_idx = self.vocab['[MASK]']
def add_pad(self, token_ids):
diff = self.max_len - len(token_ids)
if diff > 0:
token_ids += [self.pad_idx] * diff
else:
token_ids = token_ids[:self.max_len-1] + [self.sep_idx]
return token_ids
def add_special_token(self, token_ids):
return [self.cls_idx] + token_ids + [self.sep_idx]
def idx2mask(self, token_ids):
return [token_id != self.pad_idx for token_id in token_ids]
def add_pad_to_labels(self, pred_label, arg_label, all_pred_label):
pred_outside = np.array([pred_tag2idx['O']])
arg_outside = np.array([arg_tag2idx['O']])
pred_label = np.concatenate([pred_outside, pred_label, pred_outside])
arg_label = np.concatenate([arg_outside, arg_label, arg_outside])
all_pred_label = np.concatenate([pred_outside, all_pred_label, pred_outside])
diff = self.max_len - pred_label.shape[0]
if diff > 0:
pred_pad = np.array([pred_tag2idx['O']] * diff)
arg_pad = np.array([arg_tag2idx['O']] * diff)
pred_label = np.concatenate([pred_label, pred_pad])
arg_label = np.concatenate([arg_label, arg_pad])
all_pred_label = np.concatenate([all_pred_label, pred_pad])
elif diff == 0:
pass
else:
pred_label = np.concatenate([pred_label[:-1], pred_outside])
arg_label = np.concatenate([arg_label[:-1], arg_outside])
all_pred_label = np.concatenate([all_pred_label[:-1], pred_outside])
return [pred_label, arg_label, all_pred_label]
def __len__(self):
return len(self.tokens)
def __getitem__(self, idx):
token_ids = self.tokenizer.convert_tokens_to_ids(self.tokens[idx])
token_ids_padded = self.add_pad(self.add_special_token(token_ids))
att_mask = self.idx2mask(token_ids_padded)
labels = self.add_pad_to_labels(
self.single_pred_labels[idx],
self.single_arg_labels[idx],
self.all_pred_labels[idx])
single_pred_label, single_arg_label, all_pred_label = labels
assert len(token_ids_padded) == self.max_len
assert len(att_mask) == self.max_len
assert single_pred_label.shape[0] == self.max_len
assert single_arg_label.shape[0] == self.max_len
assert all_pred_label.shape[0] == self.max_len
batch = [
torch.tensor(token_ids_padded),
torch.tensor(att_mask),
torch.tensor(single_pred_label),
torch.tensor(single_arg_label),
torch.tensor(all_pred_label)
]
return batch
class OieEvalDataset(Dataset):
def __init__(self, data_path, max_len, tokenizer_config='bert-base-cased'):
self.sentences = utils.load_pkl(data_path)
self.tokenizer = BertTokenizer.from_pretrained(tokenizer_config)
self.vocab = self.tokenizer.vocab
self.max_len = max_len
self.pad_idx = self.vocab['[PAD]']
self.cls_idx = self.vocab['[CLS]']
self.sep_idx = self.vocab['[SEP]']
self.mask_idx = self.vocab['[MASK]']
def add_pad(self, token_ids):
diff = self.max_len - len(token_ids)
if diff > 0:
token_ids += [self.pad_idx] * diff
else:
token_ids = token_ids[:self.max_len-1] + [self.sep_idx]
return token_ids
def idx2mask(self, token_ids):
return [token_id != self.pad_idx for token_id in token_ids]
def __len__(self):
return len(self.sentences)
def __getitem__(self, idx):
token_ids = self.add_pad(self.tokenizer.encode(self.sentences[idx]))
att_mask = self.idx2mask(token_ids)
token_strs = self.tokenizer.convert_ids_to_tokens(token_ids)
sentence = self.sentences[idx]
assert len(token_ids) == self.max_len
assert len(att_mask) == self.max_len
assert len(token_strs) == self.max_len
batch = [
torch.tensor(token_ids),
torch.tensor(att_mask),
token_strs,
sentence
]
return batch