-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbenchmark.py
225 lines (190 loc) · 9.57 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# Copyright (c) Institute of Information Processing, Leibniz University Hannover.
import argparse
import random
import pickle
import numpy as np
import torch
import os
from PIL import Image
from torch.utils.data import Dataset, DataLoader, DistributedSampler
import datasets.transforms as T
from datasets.coco import ConvertCocoPolysToMask
import util.misc as utils
from engine import evaluate
from models import build_model
class ModelPredictionDataset(Dataset):
def __init__(self, args):
'''
:param args:
label index from 1 -> 151 classes with dummy label
relation index from 1 -> 51 classes with dummy label
bbox -> int, xywh
'''
self.img_folder = args.img_folder
with open(args.prediction, 'rb') as f:
self.predictions = pickle.load(f)
normalize = T.Compose([
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
self._transforms = T.Compose([T.Resize(size=512),
normalize])
self.prepare = ConvertCocoPolysToMask(False)
def __getitem__(self, idx):
prediction = self.predictions[idx]
image_id = prediction['image_id']
img = Image.open(os.path.join(self.img_folder, '{}.jpg'.format(image_id))).convert("RGB")
target = []
for i in range(len(prediction['labels'])):
tmp = {}
tmp['image_id'] = image_id
tmp['segmentation'] = None
tmp['area'] = 0
tmp['iscrowd'] = 0
tmp['id'] = 0
tmp['bbox'] = prediction['boxes'][i].astype(int).tolist()
tmp['category_id'] = prediction['labels'][i]
target.append(tmp)
rel_target = prediction['rel_annotations']
np.random.shuffle(rel_target)
sampled_entities = []
sampled_triplets= []
i = 0
while len(sampled_entities)<10 and len(sampled_triplets)<len(rel_target):
b1, b2, _ = rel_target[i]
if len(np.unique(sampled_entities+[b1,b2])) <= 10:
if b1 not in sampled_entities:
sampled_entities.append(b1)
if b2 not in sampled_entities:
sampled_entities.append(b2)
sampled_triplets.append(rel_target[i])
i += 1
else:
break
np.random.shuffle(sampled_entities)
sampled_entities = list(sampled_entities)
reindex_triplets = []
for triplet in sampled_triplets:
reindex_triplets.append([sampled_entities.index(triplet[0]),
sampled_entities.index(triplet[1]),
triplet[2]])
sampled_triplets = reindex_triplets
target = {'image_id': image_id, 'annotations': target, 'rel_annotations': sampled_triplets}
img, target = self.prepare(img, target)
if self._transforms is not None:
img, target = self._transforms(img, target)
# reorder boxes, labels
target['boxes'] = target['boxes'][sampled_entities]
target['labels'] = target['labels'][sampled_entities]
if target['boxes'].shape[0] < 10:
target['boxes'] = torch.cat([target['boxes'], torch.zeros([10-target['boxes'].shape[0], 4])], dim=0) # padding to 10
target['labels'] = torch.cat([target['labels'], 151*torch.ones(10-target['labels'].shape[0], dtype=torch.int64)], dim=0)# padding to 10, class index 151
return img, target
def __len__(self):
return len(self.predictions)
def get_args_parser():
parser = argparse.ArgumentParser('Set transformer detector', add_help=False)
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--lr_backbone', default=1e-5, type=float)
parser.add_argument('--batch_size', default=32, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--epochs', default=75, type=int)
parser.add_argument('--lr_drop', default=100, type=int)
parser.add_argument('--clip_max_norm', default=0.1, type=float,
help='gradient clipping max norm')
# Model parameters
parser.add_argument('--frozen_weights', type=str, default=None,
help="Path to the pretrained model. If set, only the mask head will be trained")
# * Backbone
parser.add_argument('--backbone', default='resnet50', type=str,
help="Name of the convolutional backbone to use")
parser.add_argument('--dilation', action='store_true',
help="If true, we replace stride with dilation in the last convolutional block (DC5)")
parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),
help="Type of positional embedding to use on top of the image features")
# * Transformer
parser.add_argument('--image_layer_num', default=6, type=int,
help="Number of encoding layers in the image transformer")
parser.add_argument('--graph_layer_num', default=6, type=int,
help="Number of encoding layers in the graph transformer")
parser.add_argument('--dim_feedforward', default=2048, type=int,
help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument('--hidden_dim', default=512, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--dropout', default=0.1, type=float,
help="Dropout applied in the transformer")
parser.add_argument('--nheads', default=8, type=int,
help="Number of attention heads inside the transformer's attentions")
# Setting
parser.add_argument('--node_bbox', action='store_true',
help="Enable node bounding boxes for input graph")
# dataset parameters
parser.add_argument('--dataset', default='vg')
parser.add_argument('--img_folder', default='data/vg/images/', type=str,
help="image data folder")
parser.add_argument('--prediction', type=str, help="the prediction results of scene graph generation methods")
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true')
parser.add_argument('--num_workers', default=2, type=int)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--return_interm_layers', action='store_true',
help="Return the fpn if there is the tag")
return parser
def main(args):
utils.init_distributed_mode(args)
torch.multiprocessing.set_sharing_strategy('file_system')
print("git:\n {}\n".format(utils.get_sha()))
if args.frozen_weights is not None:
assert args.masks, "Frozen training is meant for segmentation only"
print(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
model, criterion, evaluator = build_model(args)
model.to(device)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
param_dicts = [
{"params": [p for n, p in model_without_ddp.named_parameters() if "backbone" not in n and p.requires_grad]},
{
"params": [p for n, p in model_without_ddp.named_parameters() if "backbone" in n and p.requires_grad],
"lr": args.lr_backbone,
},
]
optimizer = torch.optim.AdamW(param_dicts, lr=args.lr,
weight_decay=args.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop)
dataset_val = ModelPredictionDataset(args=args)
if args.distributed:
sampler_val = DistributedSampler(dataset_val, shuffle=False)
else:
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
data_loader_val = DataLoader(dataset_val, args.batch_size, sampler=sampler_val,
drop_last=True, collate_fn=utils.collate_fn, num_workers=args.num_workers)
if args.resume:
checkpoint = torch.load(args.resume, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'], strict=True)
if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
evaluate(model, criterion, evaluator, data_loader_val, device, args)
if __name__ == '__main__':
parser = argparse.ArgumentParser('evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
main(args)