-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathengine.py
53 lines (40 loc) · 2.07 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# Copyright (c) Institute of Information Processing, Leibniz University Hannover.
import torch
import util.misc as utils
@torch.no_grad()
def evaluate(model, criterion, evaluator, data_loader, device, args):
model.eval()
criterion.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Test:'
for samples, targets in metric_logger.log_every(data_loader, 100, header):
samples = samples.to(device)
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
targets = pre_processing(targets)
outputs = model(samples, targets)
evaluator.eval_image_graph_matching(targets, outputs)
loss_dict = criterion(outputs, targets)
weight_dict = criterion.weight_dict
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = utils.reduce_dict(loss_dict)
loss_dict_reduced_scaled = {k: v * weight_dict[k]
for k, v in loss_dict_reduced.items() if k in weight_dict}
loss_dict_reduced_unscaled = {f'{k}_unscaled': v
for k, v in loss_dict_reduced.items()}
metric_logger.update(loss=sum(loss_dict_reduced_scaled.values()),
**loss_dict_reduced_scaled,
**loss_dict_reduced_unscaled)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
evaluator.print_result()
print("Averaged stats:", metric_logger)
def pre_processing(targets):
edge_max_num = max([len(t['rel_annotations']) for t in targets])
for t in targets:
if t['rel_annotations'].shape[0] < edge_max_num:
t['rel_annotations'] = torch.cat([t['rel_annotations'],
torch.tensor([[0, 0, 51]],
dtype=torch.long,
device=t['rel_annotations'].device).repeat(
edge_max_num - t['rel_annotations'].shape[0], 1)], dim=0)
return targets