-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmain.py
57 lines (44 loc) · 1.83 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import parse_args
import json
import numpy as np
import pandas as pd
from utils import basics
import glob
def train(model, opt):
for epoch in range(opt['total_epochs']):
ifbreak = model.train(epoch)
if ifbreak:
break
# record val metrics for hyperparameter selection
pred_df = model.record_val()
return pred_df
if __name__ == '__main__':
opt, wandb = parse_args.collect_args()
if not opt['test_mode']:
random_seeds = np.random.choice(range(100), size = 3, replace=False).tolist()
val_df = pd.DataFrame()
test_df = pd.DataFrame()
print('Random seed: ', random_seeds)
for random_seed in random_seeds:
opt['random_seed'] = random_seed
model = basics.get_model(opt, wandb)
pred_df = train(model, opt)
val_df = pd.concat([val_df, pred_df])
pred_df = model.test()
test_df = pd.concat([test_df, pred_df])
stat_val = basics.avg_eval(val_df, opt, 'val')
stat_test = basics.avg_eval(test_df, opt, 'test')
model.log_wandb(stat_val.to_dict())
model.log_wandb(stat_test.to_dict())
else:
if opt['cross_testing']:
test_df = pd.DataFrame()
method_model_path = opt['cross_testing_model_path']
model_paths = glob.glob(method_model_path + '/cross_domain_*.pth')
for model_path in model_paths:
opt['cross_testing_model_path_single'] = model_path
model = basics.get_model(opt, wandb)
pred_df = model.test()
test_df = pd.concat([test_df, pred_df])
stat_test = basics.avg_eval(test_df, opt, 'cross_testing')
model.log_wandb(stat_test.to_dict())