-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
92 lines (73 loc) · 3.11 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# MIT License
# Copyright (c) 2024 Ysobel Sims
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ==============================================================================
# The entry point for the program to train a model for the ZeroDiffusion method.
# Runs ten random seeds of repeated training.
# Training parameters are found here. This dictionary of parameters can be used to
# perform a grid search over the hyperparameters.
import torch
import random
import numpy as np
import statistics
from setup import setup
from train_diffusion import train
from dataloader.esc50 import create_esc50_datasets
# Get non-tuning params
params = setup()
# SET UP TEST, VALIDATION AND TRAINING DATASETS
train_set, val_set, dataset_params = create_esc50_datasets(
params.data, params.split, params.val_classes, params.test_classes, params.device
)
# Training parameters that don't need tuning
fixed_config = {
"device": params.device,
"auxiliary_dim": dataset_params["aux_dim"],
"feature_dim": dataset_params["feat_dim"],
"val_set": val_set,
"train_set": train_set,
"val_auxiliary": dataset_params["val_auxiliary"],
"train_auxiliary": dataset_params["train_auxiliary"],
}
# All the tunable parameters for training
config = {
"diffusion_lr": 1e-3,
"diffusion_batch_size": 64,
"diffusion_hidden_dim": 128,
"diffusion_epoch": 2000,
"classifier_hidden_dim": 128,
"classifier_learning_rate": 1e-4,
"classifier_dataset_size": 50, # this is per-class
"classifier_batch_size": 52,
"classifier_epoch": 20,
}
seeds = [
random.randrange(0, 9999999) for _ in range(0, 10)
] # <- Train several times randomly
n_trials = len(seeds)
print("Running {} trials.".format(n_trials))
accs = []
for trial, seed in enumerate(seeds):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
# Train the model
accs.append(train(config, fixed_config)["mean_accuracy"])
print("Mean acc is", statistics.mean(accs))
print("Standard deviation acc is", statistics.stdev(accs))
print("Best acc is {}".format(max(accs)))
print("Experiment was type {} : folder {}".format(params.split, params.data))