-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathregularization.r
195 lines (170 loc) · 7.23 KB
/
regularization.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
library(MASS)
# Function to generate noisey training and test data.
gen_data <- function(n) {
x <- sort(runif(n))
ytrue <- (cos(x) + 2) / (cos(1.4 * x) + 2)
noise <- runif(n) * 0.2
y <- ytrue + noise
return(cbind(x,y))
}
# Euclidean distance function.
dist <- function(x1,x2) {
result <- 0
for(i in 1:length(x1)) {
result <- result + (x1[i]-x2[i])^2
}
return(sqrt(result))
}
# A helper function to visualize progress.
plot_w <- function(x,y,w,plot_title,y_lim=c(0.8,1.4),x_lim=c(0,1)) {
xt <- sort(runif(1000))
plot(xt,colSums(mapply(function(x)eqn(x,w),xt)),pch='.',xlab='x',ylab='y',ylim=y_lim,xlim=x_lim)
lines(xt,colSums(mapply(function(x)eqn(x,w),xt)))
par(new=TRUE)
plot(x,y,ylim=y_lim,xlim=x_lim)
title(plot_title)
}
# Construct a polynomial equation from x values and weights.
eqn <- function(x, w) {
result <- c()
for (i in 1:length(w)) {
result <- c(result, w[i] * x^(i-1))
}
return(result)
}
# Construct a polynomial equation from x values, without weights.
eqn_ <- function(x, w) {
result <- c()
for (i in 1:length(w)) {
result <- c(result, x^(i-1))
}
return(result)
}
# Optimize the weights using regression method.
optimize <- function(x,y,func,lmbda,eta,its,w=rep(0,11),plot_title="",vis=TRUE) {
for (i in 1:its) {
w_ <- func(x,y,w,lmbda)
w1 <- w - eta * w_
d <- dist(w,w1)
w <- w1
if (vis && i%%10==0) plot_w(x,y,w,plot_title)
}
return(w)
}
# Detect if running in slave mode. If so, turn off visualization.
slave <- FALSE
if ("--slave" %in% commandArgs()) slave <- TRUE
# Derivatives used for gradient descent optimization.
derv <- function(w) function(x,y) -2 * eqn_(x,w) * (y - sum(eqn(x,w)))
dEin <- function(x,y,w,lmbda) rowSums(mapply(derv(w),x,y))/length(x)
# Regularization methods.
lasso <- function(x,y,w,lmbda) rowSums(mapply(derv(w),x,y))/length(x) + lmbda*sign(w)
ridge <- function(x,y,w,lmbda) rowSums(mapply(derv(w),x,y))/length(x) + 2*lmbda*abs(w)
direct <- function(xs,ys,lmbda) ginv(xs %*% t(xs) + lmbda * diag(dim(xs)[1])) %*% xs %*% ys
# Generate training and test datasets.
data <- gen_data(100)
x_train <- data[,1]
y_train <- data[,2]
data <- gen_data(100)
x_test <- data[,1]
y_test <- data[,2]
# Set training parameters.
eta <- 0.1
iterations <- 100
# Train model.
w <- rep(0,11)
w <- optimize(x_train,y_train,dEin,0,eta,w=w,iterations,"Unregularized Gradient Descent")
Ein_err <- sum((w %*% apply(matrix(x_test,ncol=1), 1, function(x) eqn_(x,w)) - y_test)^2)
plot_w(x_train, y_train, w, paste("Unregularized Gradient Descent, MSE=",round(Ein_err,2),sep=""))
Sys.sleep(1)
lasso_augerr <- c()
lasso_err <- c()
ridge_augerr <- c()
ridge_err <- c()
direct_augerr <- c()
direct_err <- c()
# The different amounts of regularization to use.
data_points <- c(0.00001, 0.0001,0.0005,0.001,0.005,0.01,0.05,0.1,0.2,0.4,0.6,0.8,1)
# Train a model with each regularization value.
for (lmbda in data_points) {
# Trai
w <- rep(0,11)
w <- optimize(x_train,y_train,lasso,lmbda,eta,w=w,iterations,paste("LASSO Gradient Descent Regularized, Lambda=",lmbda,sep=""),vis=!slave)
mse <- sum((w %*% apply(matrix(x_test,ncol=1), 1, function(x) eqn_(x,w)) - y_test)^2)
if (!slave) plot_w(x_train, y_train, w, paste("LASSO Gradient Descent Regularized, Lambda=",lmbda,", Test MSE=",round(mse,2),sep=""))
cat("LASSO Gradient Descent Regularized, ")
cat(paste("Lambda:",lmbda,"Weights:",paste(w,collapse=" "),"Test Mean Squared Error:",mse,"\n"))
lasso_augerr <- c(lasso_augerr, sum((w %*% apply(matrix(x_train,ncol=1), 1, function(x) eqn_(x,w)) - y_test)^2 + lmbda * sum(abs(w))))
lasso_err <- c(lasso_err, mse)
if (!slave) Sys.sleep(1)
w <- rep(0,11)
w <- optimize(x_train,y_train,ridge,lmbda,eta,w=w,iterations,paste("Ridge Gradient Descent Regularized, Lambda=",lmbda,sep=""),vis=!slave)
mse <- sum((w %*% apply(matrix(x_test,ncol=1), 1, function(x) eqn_(x,w)) - y_test)^2)
if (!slave) plot_w(x_train, y_train, w, paste("Ridge Gradient Descent Regularized, Lambda=",lmbda,", Test MSE=",round(mse,2),sep=""))
cat("Ridge Gradient Descent Regularized, ")
cat(paste("Lambda:",lmbda,"Weights:",paste(w,collapse=" "),"Test Mean Squared Error:",mse,"\n"))
ridge_augerr <- c(ridge_augerr, sum((w %*% apply(matrix(x_train,ncol=1), 1, function(x) eqn_(x,w)) - y_test)^2 + lmbda * sum(w^2)))
ridge_err <- c(ridge_err, mse)
if (!slave) Sys.sleep(1)
xs <- apply(matrix(x_train,ncol=1),1,function(x) eqn_(x,rep(0,11)))
w <- direct(xs, y_train, lmbda)
mse <- sum((t(w) %*% apply(matrix(x_test,ncol=1), 1, function(x) eqn_(x,w)) - y_test)^2)
if (!slave) plot_w(x_train, y_train, w, paste("Ridge Pseudoinverse Regularized, Lambda=",lmbda,", Test MSE=",round(mse,2),sep=""))
cat("Ridge Pseudoinverse Regularized, ")
cat(paste("Lambda:",lmbda,"Weights:",paste(w,collapse=" "),"Test Mean Squared Error:",mse,"\n"))
direct_augerr <- c(direct_augerr, sum((t(w) %*% apply(matrix(x_train,ncol=1), 1, function(x) eqn_(x,w)) - y_test)^2 + lmbda * sum(w^2)))
direct_err <- c(direct_err, mse)
if (!slave) Sys.sleep(1)
}
# Output comparison graphs
training_error_plot <- function() {
source <- lasso_augerr
plot(data_points,log(source),ylim=c(-1.1,5),pch='L',xlab="Lambda",ylab="log(Augmented Error)",log="x")
lines(data_points,log(source),ylim=c(-1.1,5),xlab="Lambda",ylab="log(Augmented Error)")
par(new=TRUE)
source <- ridge_augerr
plot(data_points,log(source),ylim=c(-1.1,5),pch='R',xlab="Lambda",ylab="log(Augmented Error)",log="x")
lines(data_points,log(source),ylim=c(-1.1,5),xlab="Lambda",ylab="log(Augmented Error)")
par(new=TRUE)
source <- direct_augerr
plot(data_points,log(source),ylim=c(-1.1,5),pch='P',xlab="Lambda",ylab="log(Augmented Error)",log="x")
lines(data_points,log(source),ylim=c(-1.1,5),xlab="Lambda",ylab="log(Augmented Error)")
abline(h=log(Ein_err),lty=6)
legend("topleft", c("LASSO","Ridge","Pseudo"), pch=c("L","R","P"), cex = 1.0);
title("Training Error")
}
if (!slave) {
training_error_plot()
Sys.sleep(4)
}
outfile <- "augment_lambda"
setEPS();
postscript(paste("./", outfile, ".eps", sep=""), onefile=FALSE);
training_error_plot()
dump <- dev.off()
testing_error_plot <- function() {
source <- lasso_err
plot(data_points,log(source),ylim=c(-1.1,3.2),pch='L',xlab="Lambda",ylab="log(Error)",log="x")
lines(data_points,log(source),ylim=c(-1.1,3.2),xlab="Lambda",ylab="log(Error)")
par(new=TRUE)
source <- ridge_err
plot(data_points,log(source),ylim=c(-1.1,3.2),pch='R',xlab="Lambda",ylab="log(Error)",log="x")
lines(data_points,log(source),ylim=c(-1.1,3.2),xlab="Lambda",ylab="log(Error)")
par(new=TRUE)
source <- direct_err
plot(data_points,log(source),ylim=c(-1.1,3.2),pch='P',xlab="Lambda",ylab="log(Error)",log="x")
lines(data_points,log(source),ylim=c(-1.1,3.2),xlab="Lambda",ylab="log(Error)")
abline(h=log(Ein_err),lty=6)
legend("topleft", c("LASSO","Ridge","Pseudo"), pch=c("L","R","P"), cex = 1.0);
text(1,-0.9,"MSE")
title("Testing Error")
}
if (!slave) {
testing_error_plot()
Sys.sleep(4)
}
outfile <- "error_lambda"
setEPS();
postscript(paste("./", outfile, ".eps", sep=""), onefile=FALSE);
testing_error_plot()
dump <- dev.off()