-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtraining.py
289 lines (252 loc) · 9.78 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
""" module providing basic training utilities"""
import os
import pdb
from os.path import join, exists
from time import time
from datetime import timedelta
from itertools import starmap
from cytoolz import curry, reduce
import torch
from torch.nn.utils import clip_grad_norm_
from torch.optim.lr_scheduler import ReduceLROnPlateau
import tensorboardX
def get_basic_grad_fn(net, clip_grad, max_grad=1e2):
def f():
grad_norm = clip_grad_norm_(
[p for p in net.parameters() if p.requires_grad], clip_grad)
#grad_norm = grad_norm.item() #yunzhu
if max_grad is not None and grad_norm >= max_grad:
print('WARNING: Exploding Gradients {:.2f}'.format(grad_norm))
grad_norm = max_grad
grad_log = {}
grad_log['grad_norm'] = grad_norm
return grad_log
return f
@curry
def compute_loss(net, criterion, fw_args, loss_args, ext_word2id):
loss = criterion(*((net(*fw_args),) + loss_args), None)
return loss
@curry
def val_step(loss_step, fw_args, loss_args, ext_word2id):
loss = loss_step(fw_args, loss_args, None)
return loss.size(0), loss.sum().item()
@curry
def basic_validate(net, criterion, val_batches):
print('running validation ... ', end='')
net.eval()
start = time()
with torch.no_grad():
ext_word2id = None
#aa, bb,ext_word2id = next(val_batches)
#validate_fn = val_step(compute_loss(net, criterion, aa, bb, ext_word2id), aa, bb, ext_word2id)
validate_fn = val_step(compute_loss(net, criterion))
n_data, tot_loss = reduce(
lambda a, b: (a[0]+b[0], a[1]+b[1]),
starmap(validate_fn, val_batches),
(0, 0)
)
#n_data+= n_data
#tot_loss += tot_loss
val_loss = tot_loss / n_data
print(
'validation finished in {}'.format(
timedelta(seconds=int(time()-start)))
)
print('validation loss: {:.4f} ... '.format(val_loss))
return {'loss': val_loss}
@curry
def compute_loss_abs(net, criterion, fw_args, loss_args, ext_word2id):
loss = criterion(*(net(*fw_args)+ loss_args), ext_word2id)
return loss
@curry
def val_step_abs(loss_step, fw_args, loss_args, ext_word2id):
loss, _ = loss_step(fw_args, loss_args, ext_word2id)
return 1, loss.sum().item()
@curry
def basic_validate_abs(net, criterion, val_batches):
print('running validation ... ', end='')
net.eval()
start = time()
with torch.no_grad():
ext_word2id = None
#aa, bb,ext_word2id = next(val_batches)
#validate_fn = val_step(compute_loss(net, criterion, aa, bb, ext_word2id), aa, bb, ext_word2id)
validate_fn = val_step_abs(compute_loss_abs(net, criterion))
n_data, tot_loss = reduce(
lambda a, b: (a[0]+b[0], a[1]+b[1]),
starmap(validate_fn, val_batches),
(0, 0)
)
#n_data+= n_data
#tot_loss += tot_loss
val_loss = tot_loss / n_data
print(
'validation finished in {}'.format(
timedelta(seconds=int(time()-start)))
)
print('validation loss: {:.4f} ... '.format(val_loss))
return {'loss': val_loss}
class BasicPipeline(object):
def __init__(self, name, net,
train_batcher, val_batcher, batch_size,
val_fn, criterion, optim, grad_fn=None):
self.name = name
self._net = net
self._train_batcher = train_batcher
self._val_batcher = val_batcher
self._criterion = criterion
self._opt = optim
# grad_fn is calleble without input args that modifyies gradient
# it should return a dictionary of logging values
self._grad_fn = grad_fn
self._val_fn = val_fn
self._n_epoch = 0 # epoch not very useful?
self._batch_size = batch_size
self._batches = self.batches()
def batches(self):
while True:
for fw_args, bw_args, ext_word2id in self._train_batcher(self._batch_size):
yield fw_args, bw_args, ext_word2id
self._n_epoch += 1
def get_loss_args(self, net_out, bw_args):
if isinstance(net_out, tuple):
loss_args = net_out + bw_args
else:
loss_args = (net_out, ) + bw_args
return loss_args
def train_step(self):
# forward pass of model
self._net.train()
fw_args, bw_args, ext_word2id = next(self._batches)
net_out = self._net(*fw_args)
# get logs and output for logging, backward
log_dict = {}
loss_args = self.get_loss_args(net_out, bw_args)
# backward and update ( and optional gradient monitoring )
"""
params = list(self._net.parameters())
k = 0
for i in params:
l = 1
for j in i.size():
l *= j
print("該層結構:{},参数和:{}".format(str(list(i.size())), str(l)))
k = k + l
print("总参数数量和:" + str(k))
"""
if self.name.split('_')[-1] == 'extractor':
sent_topics = fw_args[3]
#loss = self._criterion(*loss_args, ext_word2id).mean() # for extractor
loss = self._criterion(*loss_args, sent_topics).mean() # for extractor
else:
loss, impov_score = self._criterion(*loss_args, ext_word2id) # for abstractor
loss = loss.mean()
log_dict['impov score'] = impov_score
loss.backward()
log_dict['loss'] = loss.mean().item()
if self._grad_fn is not None:
log_dict.update(self._grad_fn())
self._opt.step()
self._net.zero_grad()
return log_dict
def validate(self): ## Need to pass ext_word2id to validation function)
#fw_args, bw_args, word2id = next(self._val_batcher(self._batch_size)) # this word2id isnot complete
return self._val_fn(self._val_batcher(self._batch_size))
#return self._val_fn(word2id, self._val_batcher(self._batch_size))
def checkpoint(self, save_path, step, val_metric=None):
save_dict = {}
if val_metric is not None:
name = 'ckpt-{:6f}-{}'.format(val_metric, step)
save_dict['val_metric'] = val_metric
else:
name = 'ckpt-{}'.format(step)
save_dict['state_dict'] = self._net.state_dict()
save_dict['optimizer'] = self._opt.state_dict()
torch.save(save_dict, join(save_path, name))
def terminate(self):
self._train_batcher.terminate()
self._val_batcher.terminate()
class BasicTrainer(object):
""" Basic trainer with minimal function and early stopping"""
def __init__(self, pipeline, save_dir, ckpt_freq, patience,
scheduler=None, val_mode='loss', trained_step=0):
assert isinstance(pipeline, BasicPipeline)
assert val_mode in ['loss', 'score']
self._pipeline = pipeline
self._save_dir = save_dir
self._logger = tensorboardX.SummaryWriter(join(save_dir, 'log'))
if not exists(join(save_dir, 'ckpt')):
os.makedirs(join(save_dir, 'ckpt'))
self._ckpt_freq = ckpt_freq
self._patience = patience
self._sched = scheduler
self._val_mode = val_mode
self._step = trained_step
self._running_loss = None
# state vars for early stopping
self._current_p = 0
self._best_val = None
def log(self, log_dict):
loss = log_dict['loss'] if 'loss' in log_dict else log_dict['reward']
if self._running_loss is not None:
self._running_loss = 0.99*self._running_loss + 0.01*loss
else:
self._running_loss = loss
print('train step: {}, {}: {:.4f}\r'.format(
self._step,
'loss' if 'loss' in log_dict else 'reward',
self._running_loss), end='')
for key, value in log_dict.items():
self._logger.add_scalar(
'{}_{}'.format(key, self._pipeline.name), value, self._step)
def validate(self):
print()
val_log = self._pipeline.validate()
for key, value in val_log.items():
self._logger.add_scalar(
'val_{}_{}'.format(key, self._pipeline.name),
value, self._step
)
if 'reward' in val_log:
val_metric = val_log['reward']
else:
val_metric = (val_log['loss'] if self._val_mode == 'loss'
else val_log['score'])
return val_metric
def checkpoint(self):
val_metric = self.validate()
self._pipeline.checkpoint(
join(self._save_dir, 'ckpt'), self._step, val_metric)
if isinstance(self._sched, ReduceLROnPlateau):
self._sched.step(val_metric)
else:
self._sched.step()
stop = self.check_stop(val_metric)
return stop
def check_stop(self, val_metric):
if self._best_val is None:
self._best_val = val_metric
elif ((val_metric < self._best_val and self._val_mode == 'loss')
or (val_metric > self._best_val and self._val_mode == 'score')):
self._current_p = 0
self._best_val = val_metric
else:
self._current_p += 1
return self._current_p >= self._patience
def train(self):
try:
start = time()
print('Start training')
while True:
#for i in range(20000):
log_dict = self._pipeline.train_step()
self._step += 1
if log_dict != None:
self.log(log_dict)
if self._step % self._ckpt_freq == 0:
stop = self.checkpoint()
if stop:
break
print('Training finised in ', timedelta(seconds=time()-start))
finally:
self._pipeline.terminate()