Skip to content

Latest commit

 

History

History
39 lines (31 loc) · 2.7 KB

README.md

File metadata and controls

39 lines (31 loc) · 2.7 KB

Sensitivity

Recommendation systems automatically recommend relevant items to users based on their preferences, which are vital to the success of online retailers and content providers. Collaborative filtering works well in practice at web scale. However, one common difficulty in collaborative filtering rec- ommendation systems is the "cold start" problem. The word "cold" refers to the items that are not yet rated by any user or the users who have not yet rated any items. We propose ELVER, an algorithm for recommending cold items from large, sparse user-item matrices. We use ELVER to recommend and optimize page-interest targeting on Facebook. Special traits of a social network like Facebook have influenced the design of ELVER. Existing techniques for cold recommendation mostly rely on content features in the event of lacking user ratings. Traditional items (e.g., movies or music) have rich, organized content features like actors, directors, awards, etc. Since it is very hard to construct universally meaningful features for the millions of Facebook pages, ELVER makes minimal assumption of content features.

2013 IEEE International Conference on Big Data Yusheng Xie, Zhengzhang Chen, Kunpeng Zhang, Yu Cheng, Chen Jin, Ankit Agrawal, and Alok Choudhary. Elver: Recommending Facebook Pages in Cold Start Situation Without Content Features

Background

  • Recommending traditional items and social entities alt tag alt tag
  • Collaborative Filtering Algorithm alt tag

The Problem

  • The cold item situation: items do not have enough user ratings. alt tag alt tag alt tag
  • Limitations of Collaborative Filtering alt tag alt tag
  • The proposed framework and components alt tag alt tag
  • An iterative algorithm (stochastic Expectation-Maximization algorithm) alt tag

Evaluation

  • Convergence of the algorithm alt tag
  • Matrix-wise recommendation mean square errors. alt tag