forked from NVlabs/DG-Net-PP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
461 lines (405 loc) · 21.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
"""
Copyright (C) 2019 NVIDIA Corporation. All rights reserved.
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
"""
from torch.utils.data import DataLoader, Subset
from torch.autograd import Variable
from torch.optim import lr_scheduler
from torchvision import transforms
from data import ImageFilelist
from torchvision.datasets import ImageFolder
from reIDfolder import ReIDFolder, ReIDFolder_mix
import torch
import os
import math
import torchvision.utils as vutils
import yaml
import numpy as np
from random import shuffle
import torch.nn.init as init
import time
from operator import itemgetter
from shutil import rmtree
# Methods
# get_all_data_loaders : primary data loader interface (load trainA, testA, trainB, testB)
# get_data_loader_list : list-based data loader
# get_data_loader_folder : folder-based data loader
# get_config : load yaml file
# eformat :
# write_2images : save output image
# prepare_sub_folder : create checkpoints and images folders for saving outputs
# prepare_sub_folder_pseudo : create checkpoints, images and pseudo labels folders for saving outputs
# get_mix_data_loaders
# write_one_row_html : write one row of the html file for output images
# write_html : create the html file.
# write_loss
# slerp
# get_slerp_interp
# get_model_list
# load_vgg16
# vgg_preprocess
# get_scheduler
# weights_init
def get_mix_data_loaders(conf):
batch_size = conf['batch_size']
num_workers = conf['num_workers']
if 'new_size' in conf:
new_size_a= conf['new_size']
new_size_b = conf['new_size']
else:
new_size_a = conf['new_size_a']
new_size_b = conf['new_size_b']
height = conf['crop_image_height']
width = conf['crop_image_width']
# generate the list of the mixed data folder
train_path = conf['data_root']
mixData = ImageFolder(train_path)
ab_list = mixData.imgs
ab_idx = [i for i in range(len(ab_list))]
size_a = conf['sample_a']
size_b = conf['sample_b']
# full lists of two datasets
a_full_idx = ab_idx[0:size_a]
b_full_idx = ab_idx[size_a:]
# generate two sample lists of two datasets with equal size
if size_a > size_b:
sel_idx = list(np.random.choice(size_a, size_b, replace=False))
a_idx = list(itemgetter(*sel_idx)(a_full_idx))
b_idx = b_full_idx.copy()
elif size_b > size_a:
sel_idx = list(np.random.choice(size_b, size_a, replace=False))
b_idx = list(itemgetter(*sel_idx)(b_full_idx))
a_idx = a_full_idx.copy()
else:
a_idx = a_full_idx.copy()
b_idx = b_full_idx.copy()
a_idx_a = a_idx.copy()
a_idx_b = a_idx.copy()
b_idx_a = b_idx.copy()
b_idx_b = b_idx.copy()
# generate two lists for train_loader_a and train_loader_b
ab_port = conf['ab_port']
bs = conf['batch_size']
size_domain = min(size_a, size_b)
ab_num = math.floor(ab_port * size_domain) // bs * bs
xx_num = (size_domain - ab_num) // bs * bs
idx_la = [] # list for loader_a
idx_lb = [] # list for loader_b
sel_idx_ab_a = list(np.random.choice(size_domain, ab_num, replace=False))
sel_idx_ab_b = list(np.random.choice(size_domain, ab_num, replace=False))
sel_idx_ba_a = list(np.random.choice(size_domain, ab_num, replace=False))
sel_idx_ba_b = list(np.random.choice(size_domain, ab_num, replace=False))
aa_idx_a = [a_idx_a[i] for i in range(size_domain) if i not in sel_idx_ab_a] # batch aa for train_loader_a
aa_idx_b = [a_idx_b[i] for i in range(size_domain) if i not in sel_idx_ba_b] # batch aa for train_loader_b
bb_idx_a = [b_idx_a[i] for i in range(size_domain) if i not in sel_idx_ba_a] # batch bb for train_loader_a
bb_idx_b = [b_idx_b[i] for i in range(size_domain) if i not in sel_idx_ab_b] # batch bb for train_loader_b
shuffle(aa_idx_a)
shuffle(aa_idx_b)
shuffle(bb_idx_a)
shuffle(bb_idx_b)
aa_idx_a = aa_idx_a[:xx_num]
aa_idx_b = aa_idx_b[:xx_num]
bb_idx_a = bb_idx_a[:xx_num]
bb_idx_b = bb_idx_b[:xx_num]
ab_idx_a, ab_idx_b, ba_idx_a, ba_idx_b = [], [], [], []
if sel_idx_ab_a != []:
ab_idx_a = list(itemgetter(*sel_idx_ab_a)(a_idx_a)) # batch ab for train_loader_a
if sel_idx_ab_b != []:
ab_idx_b = list(itemgetter(*sel_idx_ab_b)(b_idx_b)) # batch ab for train_loader_b
if sel_idx_ba_a != []:
ba_idx_a = list(itemgetter(*sel_idx_ba_a)(b_idx_a)) # batch ab for train_loader_a
if sel_idx_ba_b != []:
ba_idx_b = list(itemgetter(*sel_idx_ba_b)(a_idx_b)) # batch ab for train_loader_b
aa_thresh = conf['xx_port'] / 2
bb_thresh = aa_thresh * 2
ab_thresh = bb_thresh + conf['ab_port'] / 2
while aa_idx_b or bb_idx_a or ab_idx_a or ba_idx_a:
dice = np.random.uniform(0, 1)
if dice <= aa_thresh:
if not aa_idx_a:
continue
for _ in range(batch_size):
idx_la.append(aa_idx_a.pop())
idx_lb.append(aa_idx_b.pop())
elif dice > aa_thresh and dice <= bb_thresh:
if not bb_idx_a:
continue
for _ in range(batch_size):
idx_la.append(bb_idx_a.pop())
idx_lb.append(bb_idx_b.pop())
elif dice > bb_thresh and dice <= ab_thresh:
if not ab_idx_a:
continue
for _ in range(batch_size):
idx_la.append(ab_idx_a.pop())
idx_lb.append(ab_idx_b.pop())
else:
if not ba_idx_a:
continue
for _ in range(batch_size):
idx_la.append(ba_idx_a.pop())
idx_lb.append(ba_idx_b.pop())
train_loader_a = get_data_loader_folder_mix(os.path.join(conf['data_root'], 'train_all'), idx_la, batch_size, True,
new_size_a, height, width, num_workers, True)
test_loader_a = get_data_loader_folder(os.path.join(conf['data_root_a'], 'query'), batch_size, False,
new_size_a, height, width, num_workers, False)
train_loader_b = get_data_loader_folder_mix(os.path.join(conf['data_root'], 'train_all'), idx_lb, batch_size, True,
new_size_b, height, width, num_workers, True)
test_loader_b = get_data_loader_folder(os.path.join(conf['data_root_b'], 'query'), batch_size, False,
new_size_b, height, width, num_workers, False)
return train_loader_a, train_loader_b, test_loader_a, test_loader_b
def get_all_data_loaders(conf):
batch_size = conf['batch_size']
num_workers = conf['num_workers']
if 'new_size' in conf:
new_size_a= conf['new_size']
new_size_b = conf['new_size']
else:
new_size_a = conf['new_size_a']
new_size_b = conf['new_size_b']
height = conf['crop_image_height']
width = conf['crop_image_width']
if 'data_root' in conf:
train_loader_a = get_data_loader_folder(os.path.join(conf['data_root'], 'train_all'), batch_size, True,
new_size_a, height, width, num_workers, True)
test_loader_a = get_data_loader_folder(os.path.join(conf['data_root'], 'query'), batch_size, False,
new_size_a, height, width, num_workers, False)
train_loader_b = get_data_loader_folder(os.path.join(conf['data_root'], 'train_all'), batch_size, True,
new_size_b, height, width, num_workers, True)
test_loader_b = get_data_loader_folder(os.path.join(conf['data_root'], 'query'), batch_size, False,
new_size_b, height, width, num_workers, False)
else:
train_loader_a = get_data_loader_list(conf['data_folder_train_a'], conf['data_list_train_a'], batch_size, True,
new_size_a, height, width, num_workers, True)
test_loader_a = get_data_loader_list(conf['data_folder_test_a'], conf['data_list_test_a'], batch_size, False,
new_size_a, height, width, num_workers, False)
train_loader_b = get_data_loader_list(conf['data_folder_train_b'], conf['data_list_train_b'], batch_size, True,
new_size_b, height, width, num_workers, True)
test_loader_b = get_data_loader_list(conf['data_folder_test_b'], conf['data_list_test_b'], batch_size, False,
new_size_b, height, width, num_workers, False)
return train_loader_a, train_loader_b, test_loader_a, test_loader_b
def get_data_loader_list(root, file_list, batch_size, train, new_size=None,
height=256, width=128, num_workers=4, crop=True):
transform_list = [transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406),
(0.229, 0.224, 0.225))]
transform_list = [transforms.RandomCrop((height, width))] + transform_list if crop else transform_list
transform_list = [transforms.Pad(10, padding_mode='edge')] + transform_list if train else transform_list
transform_list = [transforms.Resize((height, width), interpolation=3)] + transform_list if new_size is not None else transform_list
transform_list = [transforms.RandomHorizontalFlip()] + transform_list if train else transform_list
transform = transforms.Compose(transform_list)
dataset = ImageFilelist(root, file_list, transform=transform)
loader = DataLoader(dataset=dataset, batch_size=batch_size, shuffle=True, drop_last=True, num_workers=num_workers)
return loader
def get_data_loader_folder(input_folder, batch_size, train, new_size=None,
height=256, width=128, num_workers=4, crop=True):
transform_list = [transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406),
(0.229, 0.224, 0.225))]
transform_list = [transforms.RandomCrop((height, width))] + transform_list if crop else transform_list
transform_list = [transforms.Pad(10, padding_mode='edge')] + transform_list if train else transform_list
transform_list = [transforms.Resize((height,width), interpolation=3)] + transform_list if new_size is not None else transform_list
transform_list = [transforms.RandomHorizontalFlip()] + transform_list if train else transform_list
transform = transforms.Compose(transform_list)
dataset = ReIDFolder(input_folder, transform=transform)
loader = DataLoader(dataset=dataset, batch_size=batch_size, shuffle=True, drop_last=True, num_workers=num_workers)
return loader
def get_data_loader_folder_mix(input_folder, idx_list, batch_size, train, new_size=None,
height=256, width=128, num_workers=4, crop=True):
transform_list = [transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406),
(0.229, 0.224, 0.225))]
transform_list = [transforms.RandomCrop((height, width))] + transform_list if crop else transform_list
transform_list = [transforms.Pad(10, padding_mode='edge')] + transform_list if train else transform_list
transform_list = [transforms.Resize((height,width), interpolation=3)] + transform_list if new_size is not None else transform_list
transform_list = [transforms.RandomHorizontalFlip()] + transform_list if train else transform_list
transform = transforms.Compose(transform_list)
dataset = ReIDFolder_mix(input_folder, transform=transform, idx_list=idx_list)
loader = DataLoader(dataset=dataset, batch_size=batch_size, shuffle=False, drop_last=True, num_workers=num_workers)
return loader
def get_config(config):
with open(config, 'r') as stream:
return yaml.load(stream)
def eformat(f, prec):
s = "%.*e"%(prec, f)
mantissa, exp = s.split('e')
# add 1 to digits as 1 is taken by sign +/-
return "%se%d"%(mantissa, int(exp))
def __write_images(image_outputs, display_image_num, file_name):
image_outputs = [images.expand(-1, 3, -1, -1) for images in image_outputs] # expand gray-scale images to 3 channels
image_tensor = torch.cat([images[:display_image_num] for images in image_outputs], 0)
image_grid = vutils.make_grid(image_tensor.data, nrow=display_image_num, padding=0, normalize=True, scale_each=True)
vutils.save_image(image_grid, file_name, nrow=1)
def write_2images(image_outputs, display_image_num, image_directory, postfix):
n = len(image_outputs)
__write_images(image_outputs[0:n//2], display_image_num, '%s/gen_a2b_%s.jpg' % (image_directory, postfix))
__write_images(image_outputs[n//2:n], display_image_num, '%s/gen_b2a_%s.jpg' % (image_directory, postfix))
def vis_2images(image_outputs, display_image_num, image_directory, postfix):
__write_images(image_outputs, display_image_num, '%s/batch_%s.jpg' % (image_directory, postfix))
def prepare_sub_folder(output_directory):
image_directory = os.path.join(output_directory, 'images')
if not os.path.exists(image_directory):
print("Creating directory: {}".format(image_directory))
os.makedirs(image_directory)
checkpoint_directory = os.path.join(output_directory, 'checkpoints')
if not os.path.exists(checkpoint_directory):
print("Creating directory: {}".format(checkpoint_directory))
os.makedirs(checkpoint_directory)
return checkpoint_directory, image_directory
def prepare_sub_folder_pseudo(output_directory):
image_directory = os.path.join(output_directory, 'images')
if not os.path.exists(image_directory):
print("Creating directory: {}".format(image_directory))
os.makedirs(image_directory)
checkpoint_directory = os.path.join(output_directory, 'checkpoints')
if not os.path.exists(checkpoint_directory):
print("Creating directory: {}".format(checkpoint_directory))
os.makedirs(checkpoint_directory)
pseudo_directory = os.path.join(output_directory, 'pseudo_train')
if not os.path.exists(pseudo_directory):
print("Creating directory: {}".format(pseudo_directory))
os.makedirs(pseudo_directory)
os.makedirs(pseudo_directory + '/train_all')
else:
rmtree(pseudo_directory)
os.makedirs(pseudo_directory)
os.makedirs(pseudo_directory + '/train_all')
return checkpoint_directory, image_directory, pseudo_directory
def write_one_row_html(html_file, iterations, img_filename, all_size):
html_file.write("<h3>iteration [%d] (%s)</h3>" % (iterations,img_filename.split('/')[-1]))
html_file.write("""
<p><a href="%s">
<img src="%s" style="width:%dpx">
</a><br>
<p>
""" % (img_filename, img_filename, all_size))
return
def write_html(filename, iterations, image_save_iterations, image_directory, all_size=1536):
html_file = open(filename, "w")
html_file.write('''
<!DOCTYPE html>
<html>
<head>
<title>Experiment name = %s</title>
<meta http-equiv="refresh" content="30">
</head>
<body>
''' % os.path.basename(filename))
html_file.write("<h3>current</h3>")
write_one_row_html(html_file, iterations, '%s/gen_a2b_train_current.jpg' % (image_directory), all_size)
write_one_row_html(html_file, iterations, '%s/gen_b2a_train_current.jpg' % (image_directory), all_size)
for j in range(iterations, image_save_iterations-1, -1):
if j % image_save_iterations == 0:
write_one_row_html(html_file, j, '%s/gen_a2b_test_%08d.jpg' % (image_directory, j), all_size)
write_one_row_html(html_file, j, '%s/gen_b2a_test_%08d.jpg' % (image_directory, j), all_size)
write_one_row_html(html_file, j, '%s/gen_a2b_train_%08d.jpg' % (image_directory, j), all_size)
write_one_row_html(html_file, j, '%s/gen_b2a_train_%08d.jpg' % (image_directory, j), all_size)
html_file.write("</body></html>")
html_file.close()
def write_loss(iterations, trainer, train_writer):
members = [attr for attr in dir(trainer) \
if not callable(getattr(trainer, attr)) and not attr.startswith("__") and ('loss' in attr or 'rank_' in attr or 'mAP_' in attr or 'grad' in attr or 'nwd' in attr)]
for m in members:
train_writer.add_scalar(m, getattr(trainer, m), iterations + 1)
def slerp(val, low, high):
"""
original: Animating Rotation with Quaternion Curves, Ken Shoemake
https://arxiv.org/abs/1609.04468
Code: https://github.com/soumith/dcgan.torch/issues/14, Tom White
"""
omega = np.arccos(np.dot(low / np.linalg.norm(low), high / np.linalg.norm(high)))
so = np.sin(omega)
return np.sin((1.0 - val) * omega) / so * low + np.sin(val * omega) / so * high
def get_slerp_interp(nb_latents, nb_interp, z_dim):
"""
modified from: PyTorch inference for "Progressive Growing of GANs" with CelebA snapshot
https://github.com/ptrblck/prog_gans_pytorch_inference
"""
latent_interps = np.empty(shape=(0, z_dim), dtype=np.float32)
for _ in range(nb_latents):
low = np.random.randn(z_dim)
high = np.random.randn(z_dim) # low + np.random.randn(512) * 0.7
interp_vals = np.linspace(0, 1, num=nb_interp)
latent_interp = np.array([slerp(v, low, high) for v in interp_vals],
dtype=np.float32)
latent_interps = np.vstack((latent_interps, latent_interp))
return latent_interps[:, :, np.newaxis, np.newaxis]
# Get model list for resume
def get_model_list(dirname, key):
if os.path.exists(dirname) is False:
return None
gen_models = [os.path.join(dirname, f) for f in os.listdir(dirname) if
os.path.isfile(os.path.join(dirname, f)) and key in f and ".pt" in f]
if gen_models is None:
return None
gen_models.sort()
last_model_name = gen_models[-1]
return last_model_name
def load_vgg16(model_dir):
""" Use the model from https://github.com/abhiskk/fast-neural-style/blob/master/neural_style/utils.py """
if not os.path.exists(model_dir):
os.mkdir(model_dir)
if not os.path.exists(os.path.join(model_dir, 'vgg16.weight')):
if not os.path.exists(os.path.join(model_dir, 'vgg16.t7')):
os.system('wget https://www.dropbox.com/s/76l3rt4kyi3s8x7/vgg16.t7?dl=1 -O ' + os.path.join(model_dir, 'vgg16.t7'))
vgglua = load_lua(os.path.join(model_dir, 'vgg16.t7'))
vgg = Vgg16()
for (src, dst) in zip(vgglua.parameters()[0], vgg.parameters()):
dst.data[:] = src
torch.save(vgg.state_dict(), os.path.join(model_dir, 'vgg16.weight'))
vgg = Vgg16()
vgg.load_state_dict(torch.load(os.path.join(model_dir, 'vgg16.weight')))
return vgg
def vgg_preprocess(batch):
tensortype = type(batch.data)
(r, g, b) = torch.chunk(batch, 3, dim = 1)
batch = torch.cat((b, g, r), dim = 1) # convert RGB to BGR
batch = (batch + 1) * 255 * 0.5 # [-1, 1] -> [0, 255]
mean = tensortype(batch.data.size())
mean[:, 0, :, :] = 103.939
mean[:, 1, :, :] = 116.779
mean[:, 2, :, :] = 123.680
batch = batch.sub(Variable(mean)) # subtract mean
return batch
def get_scheduler(optimizer, hyperparameters, iterations=-1):
if 'lr_policy' not in hyperparameters or hyperparameters['lr_policy'] == 'constant':
scheduler = None # constant scheduler
elif hyperparameters['lr_policy'] == 'step':
scheduler = lr_scheduler.StepLR(optimizer, step_size=hyperparameters['step_size'],
gamma=hyperparameters['gamma'], last_epoch=iterations)
elif hyperparameters['lr_policy'] == 'multistep':
#50000 -- 75000 --
step = hyperparameters['step_size']
scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[step, step+step//2, step+step//2+step//4],
gamma=hyperparameters['gamma'], last_epoch=iterations)
else:
return NotImplementedError('learning rate policy [%s] is not implemented', hyperparameters['lr_policy'])
return scheduler
def weights_init(init_type='gaussian'):
def init_fun(m):
classname = m.__class__.__name__
if (classname.find('Conv') == 0 or classname.find('Linear') == 0) and hasattr(m, 'weight'):
# print m.__class__.__name__
if init_type == 'gaussian':
init.normal_(m.weight.data, 0.0, 0.02)
elif init_type == 'xavier':
init.xavier_normal_(m.weight.data, gain=math.sqrt(2))
elif init_type == 'kaiming':
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif init_type == 'orthogonal':
init.orthogonal_(m.weight.data, gain=math.sqrt(2))
elif init_type == 'default':
pass
else:
assert 0, "Unsupported initialization: {}".format(init_type)
if hasattr(m, 'bias') and m.bias is not None:
init.constant_(m.bias.data, 0.0)
return init_fun
class Timer:
def __init__(self, msg):
self.msg = msg
self.start_time = None
def __enter__(self):
self.start_time = time.time()
def __exit__(self, exc_type, exc_value, exc_tb):
print(self.msg % (time.time() - self.start_time))