-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcspdf.py
202 lines (161 loc) · 7.54 KB
/
cspdf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import os
import difflib
import csv
from io import StringIO
import sys
import argparse
from tqdm import tqdm
import fitz
import cv2
import numpy as np
from skimage import metrics
from pdfminer.converter import TextConverter
from pdfminer.layout import LAParams
from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter
from pdfminer.pdfpage import PDFPage
def cv2_pdf_images(filepath):
pdf_file = fitz.open(filepath)
cv_imgs = []
for page_index in range(len(pdf_file)):
page = pdf_file.load_page(page_index)
image_list = page.get_images(full=True)
for img in image_list:
xref = img[0]
base_image = pdf_file.extract_image(xref)
image_bytes = base_image["image"]
image_array = np.frombuffer(image_bytes, np.uint8)
image = cv2.imdecode(image_array, cv2.IMREAD_COLOR)
cv_imgs.append(image)
return cv_imgs
def compare_ssim(image1, image2):
# Resize image2 to match image1's dimensions
image2_resized = cv2.resize(image2, (image1.shape[1], image1.shape[0]), interpolation=cv2.INTER_AREA)
# Convert both images to grayscale
image1_gray = cv2.cvtColor(image1, cv2.COLOR_BGR2GRAY)
image2_gray = cv2.cvtColor(image2_resized, cv2.COLOR_BGR2GRAY)
# Calculate SSIM between the two grayscale images
ssim_score, _ = metrics.structural_similarity(image1_gray, image2_gray, full=True)
return round(ssim_score, 2)
def calculate_images_similarity(images1, images2):
scores = []
for img in images1:
sim_scores = []
for img2 in images2:
sim_scores.append(compare_ssim(img, img2))
max_score = max(sim_scores)
scores.append(max_score)
avg = sum(scores) / len(scores) * 100
return round(avg, 2)
def convert_pdf_to_text(pdf_path):
rsrcmgr = PDFResourceManager()
retstr = StringIO()
laparams = LAParams()
device = TextConverter(rsrcmgr, retstr, laparams=laparams)
with open(pdf_path, 'rb') as fp:
interpreter = PDFPageInterpreter(rsrcmgr, device)
for page in PDFPage.get_pages(fp, check_extractable=True):
interpreter.process_page(page)
text = retstr.getvalue()
retstr.close()
return text
def calculate_text_similarity(text1, text2):
seq_matcher = difflib.SequenceMatcher(None, text1, text2)
similarity_ratio = seq_matcher.ratio()
similarity_percentage = round(similarity_ratio * 100, 2)
return similarity_percentage
def compare_with_all_pdfs(
target_pdf,
output_csv,
compare_image=False
):
current_directory = os.getcwd()
pdf_files = [file for file in os.listdir(current_directory) if file.lower().endswith('.pdf')]
if not pdf_files:
print("No PDF files found in the current directory.")
return
target_text = convert_pdf_to_text(target_pdf)
if (compare_image):
target_imgs = cv2_pdf_images(target_pdf)
with open(output_csv, 'w', newline='', encoding='utf-8') as csv_file:
csv_writer = csv.writer(csv_file)
if (compare_image):
csv_writer.writerow(['Source PDF', 'Compared PDF', 'Text Similarity Percentage', 'Image Similarity Percentage'])
else:
csv_writer.writerow(['Source PDF', 'Compared PDF', 'Text Similarity Percentage'])
pbar = tqdm(total=len(pdf_files) - 1, desc="Comparing PDFs", unit="pair")
for pdf_file in pdf_files:
if pdf_file != target_pdf:
compare_text = convert_pdf_to_text(pdf_file)
similarity_percentage = calculate_text_similarity(target_text, compare_text)
if (compare_image):
compare_imgs = cv2_pdf_images(pdf_file)
img_similarity_percentage = calculate_images_similarity(target_imgs, compare_imgs)
csv_writer.writerow([target_pdf, pdf_file, similarity_percentage, img_similarity_percentage])
else:
csv_writer.writerow([target_pdf, pdf_file, similarity_percentage])
if not pbar is None:
pbar.update(1)
if not pbar is None:
pbar.close()
print(f"\nComparison results exported to {output_csv}")
def compare_all_pdfs(
pdf_files,
output_csv,
compare_image=False
):
total_comparisons = len(pdf_files) * (len(pdf_files) - 1) // 2
compared_pairs = set()
with open(output_csv, 'w', newline='', encoding='utf-8') as csv_file:
csv_writer = csv.writer(csv_file)
if (compare_image):
csv_writer.writerow(['PDF 1', 'PDF 2', 'Text Similarity Percentage', 'Image Similarity Percentage'])
else:
csv_writer.writerow(['PDF 1', 'PDF 2', 'Text Similarity Percentage'])
with tqdm(total=total_comparisons, desc="Comparing PDFs", unit="pair") as pbar:
for i in range(len(pdf_files)):
pdf1 = pdf_files[i]
for j in range(i + 1, len(pdf_files)):
pdf2 = pdf_files[j]
# Check if the basenames are different
if os.path.basename(pdf1) != os.path.basename(pdf2):
pair_key = tuple(sorted([pdf1, pdf2]))
if pair_key not in compared_pairs:
text1 = convert_pdf_to_text(pdf1)
text2 = convert_pdf_to_text(pdf2)
similarity_percentage = calculate_text_similarity(text1, text2)
if (compare_image):
imgs1 = cv2_pdf_images(pdf1)
imgs2 = cv2_pdf_images(pdf2)
image_similarity_percentage = calculate_images_similarity(imgs1, imgs2)
csv_writer.writerow([pdf1, pdf2, similarity_percentage, image_similarity_percentage])
else:
csv_writer.writerow([pdf1, pdf2, similarity_percentage])
compared_pairs.add(pair_key)
pbar.update(1)
print(f"\nComparison results exported to {output_csv}")
if __name__ == "__main__":
description = "Compare and get the similarity percentage between all PDF files in the current directory."
parser = argparse.ArgumentParser()
parser.add_argument('-a', '--all', action='store_true', help="compare all PDF files with each other")
parser.add_argument('-i', '--image', action='store_true', help="comparing pdf including image similarity, slow process")
parser.add_argument('-o', '--output', default="comparison_results.csv", type=str, help="output CSV file to store the comparison results")
parser.add_argument('-t', '--target', default=None, type=str, help="target PDF file to compare with all other PDF files")
args = parser.parse_args()
if args.all:
current_directory = os.getcwd()
pdf_files = [file for file in os.listdir(current_directory) if file.lower().endswith('.pdf')]
if not pdf_files:
print("No PDF files found in the current directory.")
sys.exit(1)
if (args.image):
compare_all_pdfs(pdf_files, args.output, compare_image=True)
else:
compare_all_pdfs(pdf_files, args.output)
elif (not args.target is None):
if (args.image):
compare_with_all_pdfs(args.target, args.output, compare_image=True)
else:
compare_with_all_pdfs(args.target, args.output)
else:
print("Usage: python cspdf.py [-t <target_pdf>] [-o <output_csv>]")
sys.exit(1)