-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathnormal.go
419 lines (331 loc) · 10.1 KB
/
normal.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
package cirno
import (
"fmt"
"math"
)
// NormalTo returns the normal from the given circle
// to the other shape.
func (circle *Circle) NormalTo(shape Shape) (Vector, error) {
if shape == nil {
return Zero(), fmt.Errorf("the shape is nil")
}
switch other := shape.(type) {
case *Circle:
return circle.NormalToCircle(other)
case *Line:
return circle.NormalToLine(other)
case *Rectangle:
return circle.NormalToRectangle(other)
}
return Zero(), fmt.Errorf("unknown shape type")
}
// NormalTo returns the normal from the given rectangle
// to the other shape.
func (rect *Rectangle) NormalTo(shape Shape) (Vector, error) {
if shape == nil {
return Zero(), fmt.Errorf("the shape is nil")
}
switch other := shape.(type) {
case *Circle:
return rect.NormalToCircle(other)
case *Line:
return rect.NormalToLine(other)
case *Rectangle:
return rect.NormalToRectangle(other)
}
return Zero(), fmt.Errorf("unknown shape type")
}
// NormalTo returns the normal from the given line to
// the other shape.
func (line *Line) NormalTo(shape Shape) (Vector, error) {
if shape == nil {
return Zero(), fmt.Errorf("the shape is nil")
}
switch other := shape.(type) {
case *Circle:
return line.NormalToCircle(other)
case *Line:
return line.NormalToLine(other)
case *Rectangle:
return line.NormalToRectangle(other)
}
return Zero(), fmt.Errorf("unknown shape type")
}
// NormalToCircle returns the normal from the given circle
// to the other circle.
func (circle *Circle) NormalToCircle(other *Circle) (Vector, error) {
if other == nil {
return Zero(), fmt.Errorf("the other circle is nil")
}
return other.center.Subtract(circle.center).Normalize()
}
// NormalToRectangle returns the normal from the given circle
// to the rectangle.
func (circle *Circle) NormalToRectangle(rect *Rectangle) (Vector, error) {
if rect == nil {
return Zero(), fmt.Errorf("the rectangle is nil")
}
// Transform the circle center coordinates from the world space
// to the rectangle's local space.
t := circle.center.Subtract(rect.center)
theta := -rect.angle
t = t.Rotate(theta)
localCircle := &Circle{
center: t,
radius: circle.radius,
}
localRect := &Rectangle{
center: NewVector(0, 0),
extents: NewVector(rect.Width()/2, rect.Height()/2),
xAxis: NewVector(1, 0),
yAxis: NewVector(0, 1),
}
closestPoint := localCircle.center
// Find the point of the rectangle which is closest to
// the center of the circle.
if closestPoint.X < localRect.Min().X {
closestPoint.X = localRect.Min().X
} else if closestPoint.X > localRect.Max().X {
closestPoint.X = localRect.Max().X
}
if closestPoint.Y < localRect.Min().Y {
closestPoint.Y = localRect.Min().Y
} else if closestPoint.Y > localRect.Max().Y {
closestPoint.Y = localRect.Max().Y
}
closestPoint = closestPoint.Rotate(-theta).Add(rect.center)
normal, err := closestPoint.Subtract(circle.center).Normalize()
if err != nil {
return Zero(), err
}
return normal, nil
}
// NormalToLine returns the normal from the given circle
// to the line.
func (circle *Circle) NormalToLine(line *Line) (Vector, error) {
if line == nil {
return Zero(), fmt.Errorf("the line is nil")
}
closestPoint := line.ProjectPoint(circle.center)
if !line.ContainsPoint(closestPoint) {
cp := line.P().Subtract(circle.Center())
cq := line.Q().Subtract(circle.Center())
if cp.SquaredMagnitude() < cq.SquaredMagnitude() {
closestPoint = line.P()
} else {
closestPoint = line.Q()
}
}
normal, err := closestPoint.Subtract(circle.center).Normalize()
if err != nil {
return Zero(), err
}
if math.IsNaN(normal.X) {
normal.X = 0.0
}
if math.IsNaN(normal.Y) {
normal.Y = 0.0
}
return normal, nil
}
// NormalToCircle returns the normal from the given line
// to the circle.
func (line *Line) NormalToCircle(circle *Circle) (Vector, error) {
if circle == nil {
return Zero(), fmt.Errorf("the circle is nil")
}
normalToLine, err := circle.NormalToLine(line)
if err != nil {
return Zero(), err
}
return normalToLine.MultiplyByScalar(-1), nil
}
// NormalToLine returns the normal from the given line
// to the other line.
func (line *Line) NormalToLine(other *Line) (Vector, error) {
if line == nil {
return Zero(), fmt.Errorf("the line is nil")
}
normal := Zero()
pRightOfLine, err := line.isPointRightOfLine(other.p)
if err != nil {
return Zero(), err
}
qRightOfLine, err := line.isPointRightOfLine(other.q)
if err != nil {
return Zero(), err
}
if pRightOfLine == qRightOfLine {
pointProj := line.ProjectPoint(other.p)
normal, err = other.p.Subtract(pointProj).Normalize()
if err != nil {
return Zero(), err
}
} else {
pointProj := other.ProjectPoint(line.p)
normal, err = pointProj.Subtract(line.p).Normalize()
if err != nil {
return Zero(), err
}
}
return normal, nil
}
// NormalToRectangle returns the normal from the given line
// to the rectangle.
func (line *Line) NormalToRectangle(rect *Rectangle) (Vector, error) {
if rect == nil {
return Zero(), fmt.Errorf("the rectangle is nil")
}
normalToLine, err := rect.NormalToLine(line)
if err != nil {
return Zero(), err
}
return normalToLine.MultiplyByScalar(-1), nil
}
// NormalToCircle returns the normal from the given rectangle
// to the circle.
func (rect *Rectangle) NormalToCircle(circle *Circle) (Vector, error) {
if circle == nil {
return Zero(), fmt.Errorf("the circle is nil")
}
normalToRect, err := circle.NormalToRectangle(rect)
if err != nil {
return Zero(), err
}
return normalToRect.MultiplyByScalar(-1), nil
}
// NormalToLine returns the normal between the given rectangle
// and the line.
func (rect *Rectangle) NormalToLine(line *Line) (Vector, error) {
if line == nil {
return Zero(), fmt.Errorf("the line is nil")
}
lineAxisX, err := line.q.Subtract(line.Center()).Normalize()
if err != nil {
return Zero(), err
}
lineAxisY := lineAxisX.Rotate(90)
lineExtent := line.Length() / 2
t := line.Center().Subtract(rect.center)
sepAx := math.Abs(Dot(t, rect.xAxis)) > rect.extents.X+
math.Abs(Dot(lineAxisX.MultiplyByScalar(lineExtent), rect.xAxis))
sepAy := math.Abs(Dot(t, rect.yAxis)) > rect.extents.Y+
math.Abs(Dot(lineAxisX.MultiplyByScalar(lineExtent), rect.yAxis))
sepLineX := math.Abs(Dot(t, lineAxisX)) > lineExtent+
math.Abs(Dot(rect.xAxis.MultiplyByScalar(rect.extents.X), lineAxisX))+
math.Abs(Dot(rect.yAxis.MultiplyByScalar(rect.extents.Y), lineAxisX))
sepLineY := math.Abs(Dot(t, lineAxisY)) >
math.Abs(Dot(rect.xAxis.MultiplyByScalar(rect.extents.X), lineAxisY))+
math.Abs(Dot(rect.yAxis.MultiplyByScalar(rect.extents.Y), lineAxisY))
var normal Vector
if sepAx {
normal = rect.xAxis
sepLine, err := NewLine(rect.center,
rect.center.Add(rect.yAxis))
if err != nil {
return Zero(), err
}
if sepLine.Orientation(line.Center()) < 0 {
normal = normal.MultiplyByScalar(-1)
}
} else if sepAy {
normal = rect.yAxis
sepLine, err := NewLine(rect.center,
rect.center.Add(rect.xAxis))
if err != nil {
return Zero(), err
}
if sepLine.Orientation(line.Center()) > 0 {
normal = normal.MultiplyByScalar(-1)
}
} else if sepLineX {
normal = lineAxisX
sepLine, err := NewLine(line.Center(),
line.Center().Add(lineAxisY))
if err != nil {
return Zero(), err
}
if sepLine.Orientation(rect.center) > 0 {
normal = normal.MultiplyByScalar(-1)
}
} else if sepLineY {
normal = lineAxisY
sepLine, err := NewLine(line.Center(),
line.Center().Add(lineAxisX))
if err != nil {
return Zero(), err
}
if sepLine.Orientation(rect.center) < 0 {
normal = normal.MultiplyByScalar(-1)
}
}
return normal, nil
}
// NormalToRectangle returns the normal from the given rectangle to
// the other rectangle.
func (rect *Rectangle) NormalToRectangle(other *Rectangle) (Vector, error) {
if other == nil {
return Zero(), fmt.Errorf("the rectangle is nil")
}
// A vector from the center of rectangle A to the center of rectangle B.
t := other.center.Subtract(rect.center)
// Check if Ax is parallel to the separating axis and hence the separating axis exists.
sepAx := math.Abs(Dot(t, rect.xAxis)) > rect.extents.X+
math.Abs(Dot(other.xAxis.MultiplyByScalar(other.extents.X), rect.xAxis))+
math.Abs(Dot(other.yAxis.MultiplyByScalar(other.extents.Y), rect.xAxis))
// Check if Ay is parallel to the separating axis and hence the separating axis exists.
sepAy := math.Abs(Dot(t, rect.yAxis)) > rect.extents.Y+
math.Abs(Dot(other.xAxis.MultiplyByScalar(other.extents.X), rect.yAxis))+
math.Abs(Dot(other.yAxis.MultiplyByScalar(other.extents.Y), rect.yAxis))
// Check if Bx is parallel to the separating axis and hence the separating axis exists.
sepBx := math.Abs(Dot(t, other.xAxis)) > other.extents.X+
math.Abs(Dot(rect.xAxis.MultiplyByScalar(rect.extents.X), other.xAxis))+
math.Abs(Dot(rect.yAxis.MultiplyByScalar(rect.extents.Y), other.xAxis))
// Check if By is parallel to the separating axis and hence the separating axis exists.
sepBy := math.Abs(Dot(t, other.yAxis)) > other.extents.Y+
math.Abs(Dot(rect.xAxis.MultiplyByScalar(rect.extents.X), other.yAxis))+
math.Abs(Dot(rect.yAxis.MultiplyByScalar(rect.extents.Y), other.yAxis))
var normal Vector
if sepAx {
normal = rect.xAxis
sepLine, err := NewLine(rect.center,
rect.center.Add(rect.yAxis))
if err != nil {
return Zero(), err
}
if sepLine.Orientation(other.center) < 0 {
normal = normal.MultiplyByScalar(-1)
}
} else if sepAy {
normal = rect.yAxis
sepLine, err := NewLine(rect.center,
rect.center.Add(rect.xAxis))
if err != nil {
return Zero(), err
}
if sepLine.Orientation(other.center) > 0 {
normal = normal.MultiplyByScalar(-1)
}
} else if sepBx {
normal = other.xAxis
sepLine, err := NewLine(other.center,
other.center.Add(other.yAxis))
if err != nil {
return Zero(), err
}
if sepLine.Orientation(rect.center) > 0 {
normal = normal.MultiplyByScalar(-1)
}
} else if sepBy {
normal = other.yAxis
sepLine, err := NewLine(other.center,
other.center.Add(other.xAxis))
if err != nil {
return Zero(), err
}
if sepLine.Orientation(rect.center) < 0 {
normal = normal.MultiplyByScalar(-1)
}
}
return normal, nil
}