-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmy_code_hw01.py
527 lines (425 loc) · 18.6 KB
/
my_code_hw01.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
#-- my_code_hw01.py
#-- import outside the standard Python library are not allowed, just those:
import math
import numpy as np
import scipy.spatial
import startinpy
#-----
#-- Constant value should not be changed
nodata_value = -9999
#-----
def points2D(list_pts_3d):
"""
Function that converts the 3d point list to 2d for computing convex hull, bbox, etc.
Can get z value(elevation) by the point index.
Input:
list_pts_3d: the list of the input points (in 3D)
Return:
2d tuple, ((x1,y1),(x2,y2)...(xn,yn)) shouldn't change the sample point
if need to, convert it into list/ndarray first
"""
mypoints = []
for item in list_pts_3d:
mypoints.append((item[0],item[1]))
return tuple(mypoints)
def point_in_hull(point, hull, tolerance=1e-8):
"""
Function that identifies whether a point is in the convex hull.
Input:
point: a single point(x,y)
hull: constructed hull object
tolerance: 1e-8, if tolerance is infinity, all the points are considered inside the convex hull
"""
return all((np.dot(eq[:-1], point) + eq[-1] <= tolerance) for eq in hull.equations)
def bounding_box(list_pts_3d):
"""
Function that constructs the bounding box and return the points(lowleft and upright).
Input:
list_pts_3d: the list of the input points (in 3D)
Return:
(lowleft,upright):((min_x,min_y),(max_x,max_y))
"""
points = points2D(list_pts_3d)
min_x, min_y = np.min(points, axis=0)
max_x, max_y = np.max(points, axis=0)
lowleft = (min_x,min_y)
upright = (max_x,max_y)
return (lowleft,upright)
def get_size(list_pts_3d, jparams):
"""
Function that gets the rows and cols of output raster.
Input:
list_pts_3d: the list of the input points (in 3D)
jparams : the parameters of the input for specific method
Return:
(nrows,ncols)
"""
cellsize = abs(jparams['cellsize']) # get cellsize from the json file
lowleft = bounding_box(list_pts_3d)[0]
upright = bounding_box(list_pts_3d)[1]
cal_col = (upright[0]-lowleft[0])/cellsize
cal_row = (upright[1]-lowleft[1])/cellsize
nrows = math.ceil(cal_row) # round-up
ncols = math.ceil(cal_col) # round-up
return (nrows,ncols)
def rowcol_to_xy(cur_row, cur_col, lowleft, nrows, cellsize):
"""
Function that converts the row-col coordinate to xy-center coordinate.
Input:
Return:
the center coordinate of the cell: (x,y)
lowleft is for calculating the coordinates (x,y) in the origin coordinate system
lowleft is NOT the origin point of the origin coordinate system, the origin is: (0,0)
"""
x = lowleft[0] + (cur_col+0.5)*cellsize
y = lowleft[1] + (nrows-cur_row-0.5)*cellsize
return (x,y)
def output_raster(raster, list_pts_3d, jparams):
"""
Function for outputing raster to a standard '.asc' file
Return:
raster: 2D ndarray
file_nm: file name according to the json file
"""
ncols = len(raster[0])
nrows = len(raster)
xllcorner = bounding_box(list_pts_3d)[0][0]
yllcorner = bounding_box(list_pts_3d)[0][1]
cellsize = abs(jparams['cellsize'])
file_nm = jparams['output-file']
# output attribute information
with open(file_nm, 'w') as fh:
fh.writelines('NCOLS' + ' ' + str(ncols) + '\n')
fh.writelines('NROWS' + ' ' + str(nrows) + '\n')
fh.writelines('XLLCORNER' + ' ' + str(xllcorner) + '\n')
fh.writelines('YLLCORNER' + ' ' + str(yllcorner) + '\n')
fh.writelines('CELLSIZE' + ' ' + str(cellsize) + '\n')
fh.writelines('NODATA_VALUE' + ' ' + str(nodata_value) + '\n')
# output raster cell values
for row in raster:
for col in row:
fh.writelines(str(col)+' ')
fh.writelines('\n')
def nn(list_pts_3d, jparams):
"""
Function for nearest neighbour interpolation.
Return:
raster: 2D ndarray
"""
cellsize = abs(jparams['cellsize'])
lowleft = bounding_box(list_pts_3d)[0]
nrows = get_size(list_pts_3d, jparams)[0]
ncols = get_size(list_pts_3d, jparams)[1]
points = points2D(list_pts_3d)
hull = scipy.spatial.ConvexHull(points)
kd = scipy.spatial.KDTree(points)
raster = np.zeros((nrows, ncols))
for i in range(nrows):
for j in range(ncols):
center_pt = rowcol_to_xy(i, j, lowleft, nrows, cellsize)
index = kd.query(center_pt,p=2, k=1)[1] # return the index of the nearest neighbour point
value = list_pts_3d[index][2] # get the z value of the nn point
raster[i][j] = value if point_in_hull(center_pt, hull) else nodata_value # assign the value
return raster
def nn_interpolation(list_pts_3d, jparams):
"""
Function that writes the output raster with nearest neighbour interpolation
Input:
list_pts_3d: the list of the input points (in 3D)
jparams: the parameters of the input for "nn"
Output:
(output file written to disk)
"""
# print("cellsize:", jparams['cellsize'])
#-- to speed up the nearest neighbour us a kd-tree
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.KDTree.html#scipy.spatial.KDTree
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.KDTree.query.html#scipy.spatial.KDTree.query
# kd = scipy.spatial.KDTree(list_pts)
# d, i = kd.query(p, k=1)
raster = nn(list_pts_3d, jparams)
output_raster(raster, list_pts_3d, jparams)
print("File written to", jparams['output-file'])
def point_dist(pt_a, pt_b):
"""
Function for calculating the distance between two points.
Return: float
"""
return math.sqrt((pt_b[0]-pt_a[0])**2 + (pt_b[1]-pt_a[1])**2)
def idw_nearby(center_pt, points, radius1, radius2, angle, max_points, min_points, kd):
"""
Input:
angle: in degrees, CCW
Return:
nearby_pts_id
"""
radius = max(radius1, radius2) # radius for kd-tree search
a = max(radius1, radius2) # semi-major axis
b = min(radius1, radius2) # semi-minor axis
if(a==0 or b==0): return [i for i in range(len(points))] # return the index list of points
#xll, yll = bounding_box(points)[0][0], bounding_box(points)[0][1]
#x_offset, y_offset = center_pt[0] - xll, center_pt[1] - yll # coordinate system converting
x_offset, y_offset = center_pt[0], center_pt[1]
rotation = np.array([[math.cos(math.radians(angle)), math.sin(math.radians(angle))],
[-math.sin(math.radians(angle)), math.cos(math.radians(angle))]])
nearby_pts_id = [] # index of nearby points
for id in kd.query_ball_point(center_pt, radius):
x, y = points[id][0], points[id][1] # in the original coordinate system
xc, yc = x - x_offset, y - y_offset # in the center_pt coordinate system
rotate_xy = rotation @ np.array([[xc],[yc]]) # in the center_pt-rotate coordinate system
xr, yr = rotate_xy[0][0], rotate_xy[1][0]
if(max_points==0 and radius1 >= radius2):
if((xr*xr)/(a*a) + (yr*yr)/(b*b) <= 1): nearby_pts_id.append(id)
elif(max_points==0 and radius1 < radius2):
if((yr*yr)/(a*a) + (xr*xr)/(b*b) <= 1): nearby_pts_id.append(id)
elif(len(nearby_pts_id) <= max_points and radius1 >= radius2):
if((xr*xr)/(a*a) + (yr*yr)/(b*b) <= 1): nearby_pts_id.append(id)
elif(len(nearby_pts_id) <= max_points and radius1 < radius2):
if((yr*yr)/(a*a) + (xr*xr)/(b*b) <= 1): nearby_pts_id.append(id)
elif(len(nearby_pts_id) > max_points): break
return nearby_pts_id
def idw_circle_cal(dt, center_pt, points, list_pts_3d, radius1, radius2, angle, max_points, min_points, power, kd):
"""
Function for calculating the z value of the center point using IDW.
Search shape: Circle
Return: float
"""
find = scipy.spatial.Delaunay.find_simplex(dt,center_pt)
if(find == -1): return nodata_value # point outside of the tin(outside of the convex hull)
nearby_pts_id = idw_nearby(center_pt, points, radius1, radius2, angle, max_points, min_points, kd)
if(len(nearby_pts_id) <= min_points): return nodata_value # if no points found return nodata
else:
weight_sum = 0
value_sum = 0
for id in nearby_pts_id:
weight_sum += math.pow(point_dist(center_pt, points[id]), -power)
value_sum += math.pow(point_dist(center_pt, points[id]), -power) * list_pts_3d[id][2]
return (value_sum/weight_sum) if weight_sum != 0 else 0
def idw(list_pts_3d, jparams):
"""
Function for idw interpolation.
Return:
raster: 2D ndarray
"""
cellsize = abs(jparams['cellsize'])
radius1 = abs(jparams['radius1'])
radius2 = abs(jparams['radius2'])
max_points = abs(jparams['max_points'])
min_points = abs(jparams['min_points'])
angle = jparams['angle']
power = jparams['power']
max_points = max(min_points,max_points) # robust
min_points = min(min_points,max_points)
lowleft = bounding_box(list_pts_3d)[0]
nrows = get_size(list_pts_3d, jparams)[0]
ncols = get_size(list_pts_3d, jparams)[1]
points = points2D(list_pts_3d)
#hull = scipy.spatial.ConvexHull(points)
dt = scipy.spatial.Delaunay(points)
kd = scipy.spatial.KDTree(points)
raster = np.zeros((nrows, ncols))
for i in range(nrows):
for j in range(ncols):
center_pt = rowcol_to_xy(i, j, lowleft, nrows, cellsize)
raster[i][j] = idw_circle_cal(dt, center_pt, points, list_pts_3d, radius1, radius2, angle, max_points, min_points, power, kd)
#raster[i][j] = value if point_in_hull(center_pt, hull) else nodata_value # assign the value
return raster
def idw_interpolation(list_pts_3d, jparams):
"""
Function that writes the output raster with IDW
Input:
list_pts_3d: the list of the input points (in 3D)
jparams: the parameters of the input for "idw"
Output:
(output file written to disk)
"""
# print("cellsize:", jparams['cellsize'])
# print("radius:", jparams['radius1'])
# ...
# print("radius:", jparams['angle'])
#-- to speed up the nearest neighbour us a kd-tree
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.KDTree.html#scipy.spatial.KDTree
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.KDTree.query.html#scipy.spatial.KDTree.query
# kd = scipy.spatial.KDTree(list_pts)
# i = kd.query_ball_point(p, radius)
raster = idw(list_pts_3d, jparams)
output_raster(raster, list_pts_3d, jparams)
print("File written to", jparams['output-file'])
def area_triangle(center_pt, pt_a, pt_b):
"""
Area of this triangle, using Heron's formula.
Input:
3 points. Format:(x,y)
Return:
float
"""
a, b, c = point_dist(center_pt, pt_a), point_dist(center_pt, pt_b), point_dist(pt_a, pt_b)
if(a+b<=c or a+c<=b or b+c<=a): return 0.0 # check whether the triangle is "legal"
if(a-b>=c or a-c>=b or b-c>=a): return 0.0
s = (a+b+c)/2
sum = math.sqrt(s*(s-a)*(s-b)*(s-c))
return sum if (a>1e-8 and b>1e-8 and c>1e-8) else 0.0
def tin_cal(center_pt, points, list_pts_3d, dt):
"""
Calculate the z value of the unknown point using linear interpolation(TIN).
"""
if(len(dt.simplices)==0):
print("Delaunay triangulation of input dataset constructed error")
return nodata_value
id = scipy.spatial.Delaunay.find_simplex(dt,center_pt)
if(id == -1): return nodata_value # point outside of the tin
a0 = area_triangle(center_pt, points[dt.simplices[id][1]], points[dt.simplices[id][2]])
a1 = area_triangle(center_pt, points[dt.simplices[id][2]], points[dt.simplices[id][0]])
a2 = area_triangle(center_pt, points[dt.simplices[id][0]], points[dt.simplices[id][1]])
total_value = 0
total_value += list_pts_3d[dt.simplices[id][0]][2]*a0
total_value += list_pts_3d[dt.simplices[id][1]][2]*a1
total_value += list_pts_3d[dt.simplices[id][2]][2]*a2
return total_value/(a0+a1+a2)
def tin(list_pts_3d, jparams):
"""
Linear tin interpolation.
"""
cellsize = abs(jparams['cellsize'])
lowleft = bounding_box(list_pts_3d)[0]
nrows = get_size(list_pts_3d, jparams)[0]
ncols = get_size(list_pts_3d, jparams)[1]
points = points2D(list_pts_3d)
#hull = scipy.spatial.ConvexHull(points)
dt = scipy.spatial.Delaunay(points)
kd = scipy.spatial.KDTree(points)
raster = np.zeros((nrows, ncols))
for i in range(nrows):
for j in range(ncols):
center_pt = rowcol_to_xy(i, j, lowleft, nrows, cellsize)
raster[i][j] = tin_cal(center_pt, points, list_pts_3d, dt)
#raster[i][j] = value if point_in_hull(center_pt, hull) else nodata_value # assign the value
return raster
def tin_interpolation(list_pts_3d, jparams):
"""
Function that writes the output raster with linear in TIN interpolation
Input:
list_pts_3d: the list of the input points (in 3D)
jparams: the parameters of the input for "tin"
Output:
(output file written to disk)
"""
#-- example to construct the DT with scipy
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.Delaunay.html#scipy.spatial.Delaunay
# dt = scipy.spatial.Delaunay([])
#-- example to construct the DT with startinpy
# minimal docs: https://github.com/hugoledoux/startinpy/blob/master/docs/doc.md
# how to use it: https://github.com/hugoledoux/startinpy#examples
# you are *not* allowed to use the function for the tin linear interpolation that I wrote for startinpy
# you need to write your own code for this step
# but you can of course read the code [dt.interpolate_tin_linear(x, y)]
raster = tin(list_pts_3d, jparams)
output_raster(raster, list_pts_3d, jparams)
print("File written to", jparams['output-file'])
def circum_circle(dt,tri_ids):
"""
return the coordinate of the circum circle of the triangle: (x,y)
Input:
dt: the Delaunay triangulation object
tri_ids [a1,a2,a3] the indices of the incident triangle of the inserted point
the first indice, tri_ids[0] is the inserted interpolated point
"""
p0, p1, p2 = dt.get_point(tri_ids[0]), dt.get_point(tri_ids[1]), dt.get_point(tri_ids[2])
if(area_triangle(p0,p1,p2)==0):
print("No triangle, please check the conditions of laplace function")
return None
ax, ay = p0[0], p0[1] # x, y
bx, by = p1[0], p1[1]
cx, cy = p2[0], p2[1]
# calculate center of circumcircle
D = 2.0 * (ax*(by-cy) + bx*(cy-ay) + cx*(ay-by))
if(D!=0):
ux = ((ax*ax+ay*ay)*(by-cy) + (bx*bx+by*by)*(cy-ay) + (cx*cx+cy*cy)*(ay-by))/D
uy = ((ax*ax+ay*ay)*(cx-bx) + (bx*bx+by*by)*(ax-cx) + (cx*cx+cy*cy)*(bx-ax))/D
center = (ux,uy)
else:
print("Calculating error, please check the circum_circle function")
return None
return center
def laplace_cal(dt, hull, insert_pt):
"""
Calculate the value of each cell.
Input:
dt: Delaunay triangulation
hull: Convex hull
insert_pt: interpolation point
"""
if(len(dt.all_triangles())==0): return nodata_value
if(point_in_hull(insert_pt, hull)==False): return nodata_value # point outside of the convex hull
insert_id = dt.insert_one_pt(insert_pt[0], insert_pt[1], 0) # DO NOT forget to delete
tri_ids = dt.incident_triangles_to_vertex(insert_id)
j = 0
for i in range(len(tri_ids)):
if 0 in tri_ids[j]:
tri_ids.pop(j)
else:
j += 1
if(len(tri_ids)==2): # on the boundary
center_pt = dt.get_point(tri_ids[0][0]) # find the center and the neighbour
neighbour_pt = dt.get_point(tri_ids[0][2])
c1 = circum_circle(dt,tri_ids[0]) # get the Voronoi edge length
c2 = circum_circle(dt,tri_ids[1])
edge = point_dist(c1, c2)
if(dt.remove(insert_id)==1): # delete the insert point from DT
return (edge/dist)*dt.get_point(tri_ids[0][2])[2] # get the interpolation value
else:
return nodata_value
else:
tri_ids.append(tri_ids[0]) # add the first item of the tri_list
total_weight = 0
total_value = 0
for i in range(len(tri_ids)-1): # pairwise combination
center_pt = dt.get_point(tri_ids[i][0]) # find the center and the neighbour
neighbour_pt = dt.get_point(tri_ids[i][2])
dist = point_dist(center_pt, neighbour_pt)
c1 = circum_circle(dt,tri_ids[i]) # get the Voronoi edge length
c2 = circum_circle(dt,tri_ids[i+1])
edge = point_dist(c1, c2)
total_weight += edge/dist
total_value += (edge/dist)*dt.get_point(tri_ids[i][2])[2]
if(dt.remove(insert_id)==1): # delete the insert point from DT
return total_value/total_weight if total_weight!=0 else nodata_value
else:
return nodata_value
def laplace(list_pts_3d, jparams):
"""
laplace interpolation.
"""
cellsize = abs(jparams['cellsize'])
lowleft = bounding_box(list_pts_3d)[0]
nrows = get_size(list_pts_3d, jparams)[0]
ncols = get_size(list_pts_3d, jparams)[1]
points = points2D(list_pts_3d)
hull = scipy.spatial.ConvexHull(points)
dt = startinpy.DT()
dt.insert(list_pts_3d)
raster = np.zeros((nrows, ncols))
for i in range(nrows):
for j in range(ncols):
center_pt = rowcol_to_xy(i, j, lowleft, nrows, cellsize)
raster[i][j] = laplace_cal(dt,hull,center_pt)
return raster
def laplace_interpolation(list_pts_3d, jparams):
"""
Function that writes the output raster with Laplace interpolation
Input:
list_pts_3d: the list of the input points (in 3D)
jparams: the parameters of the input for "laplace"
Output:
(output file written to disk)
"""
#-- example to construct the DT with scipy
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.Delaunay.html#scipy.spatial.Delaunay
# dt = scipy.spatial.Delaunay([])
#-- example to construct the DT with startinpy
# minimal docs: https://github.com/hugoledoux/startinpy/blob/master/docs/doc.md
# how to use it: https://github.com/hugoledoux/startinpy#examples
# you are *not* allowed to use the function for the laplace interpolation that I wrote for startinpy
# you need to write your own code for this step
raster = laplace(list_pts_3d, jparams)
output_raster(raster, list_pts_3d, jparams)
print("File written to", jparams['output-file'])