-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmy_code_xyt.py
292 lines (220 loc) · 8.97 KB
/
my_code_xyt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
# -- my_code_hw01.py
# -- import outside the standard Python library are not allowed, just those:
import math
import numpy as np
import scipy.spatial
import startinpy
nodata_value = -9999
# -----
def Point2D(list_pts_3d):
coord_list = []
for item in list_pts_3d:
coord = (item[0], item[1])
coord_list.append(coord)
return coord_list
def bounding_box(list_pts_3d):
coord_list = Point2D(list_pts_3d)
min_x, min_y = np.min(coord_list, axis=0)
max_x, max_y = np.max(coord_list, axis=0)
bbox = ((min_x, min_y), (max_x, max_y))
return bbox
def cal_col_row_size(list_pts_3d, jparams):
cellsize = jparams['cellsize']
lower_left = bounding_box(list_pts_3d)[0]
upper_right = bounding_box(list_pts_3d)[1]
col_size = math.ceil((upper_right[0] - lower_left[0]) / cellsize)
row_size = math.ceil((upper_right[1] - lower_left[1]) / cellsize)
return cellsize, row_size, col_size
def cal_raster_center(bbox, nrow, ncol, nrows, cellsize):
center_x = bbox[0][0] + (ncol + 0.5) * cellsize
center_y = bbox[0][1] + (nrows - nrow - 0.5) * cellsize
point = (center_x, center_y)
return point
def cal_convexhull(list_pts_3d):
list_pts_2d = Point2D(list_pts_3d)
hull = scipy.spatial.ConvexHull(list_pts_2d)
return hull
def if_in_convexhull(point, convexhull):
return all((np.dot(eq[:-1], point) + eq[-1] <= 1e-8) for eq in convexhull.equations)
def output_file(raster, filename, list_pt_3d, jparams):
cellsize, nrows, ncols = cal_col_row_size(list_pt_3d, jparams)
XLLCORNER = bounding_box(list_pt_3d)[0][0]
YLLCORNER = bounding_box(list_pt_3d)[0][1]
with open(filename, 'w') as fh:
fh.write('{} {}{}'.format('NCOLS', ncols, '\n'))
fh.write('{} {}{}'.format('NROWS', nrows, '\n'))
fh.write('{} {}{}'.format('XLLCORNER', XLLCORNER, '\n'))
fh.write('{} {}{}'.format('YLLCORNER', YLLCORNER, '\n'))
fh.write('{} {}{}'.format('CELLSIZE', cellsize, '\n'))
fh.write('{} {}{}'.format('NODATA_VALUE', '-9999', '\n'))
for i in range(nrows):
for j in range(ncols):
fh.write('{} '.format(raster[i][j]))
fh.write('\n')
def nn_interpolation(list_pts_3d, jparams):
list_pts_2d = Point2D(list_pts_3d)
bbox = bounding_box(list_pts_3d)
cellsize, nrows, ncols = cal_col_row_size(list_pts_3d, jparams)
raster = np.zeros((nrows, ncols))
hull = scipy.spatial.ConvexHull(list_pts_2d)
for i in range(nrows):
for j in range(ncols):
kd = scipy.spatial.KDTree(list_pts_2d)
center = cal_raster_center(bbox, i, j, nrows, cellsize)
d, index = kd.query(center,p=2, k=1)
raster_value = list_pts_3d[index][2]
if if_in_convexhull(center, hull):
raster[i][j] = raster_value
else:
raster[i][j] = nodata_value
output_file(raster, jparams['output-file'], list_pts_3d, jparams)
# print("cellsize:", jparams['cellsize'])
# -- to speed up the nearest neighbour us a kd-tree
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.KDTree.html#scipy.spatial.KDTree
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.KDTree.query.html#scipy.spatial.KDTree.query
# kd = scipy.spatial.KDTree(list_pts)
# d, i = kd.query(p, k=1)
print("File written to", jparams['output-file'])
def if_in_ellipse(pt, a, b):
if ((pt[0] / a) ** 2 + (pt[1] / b) ** 2) > 1:
return False
else:
return True
def dis(center, point):
distance = math.sqrt((center[0] - point[0]) ** 2 + (center[1] - point[1]) ** 2)
return distance
def get_idw_points(kd, center, radius1, radius2, list_pts_3d):
weight_pt = []
a = radius1
b = radius2
for index in kd.query_ball_point(center, radius1):
x, y = list_pts_3d[index][0] - center[0], list_pts_3d[index][1] - center[1]
if (x * x) / (a * a) + (y * y) / (b * b) <= 1:
weight_pt.append(index)
return weight_pt
def cal_weight(dt, center, kd, radius1, radius2, power, list_pts_3d):
points = Point2D(list_pts_3d)
find = scipy.spatial.Delaunay.find_simplex(dt, center)
if find == -1:
return nodata_value
weight_pt = get_idw_points(kd, center, radius1, radius2, list_pts_3d)
if len(weight_pt) <= 0:
return nodata_value
else:
weight_sum = 0
value_sum = 0
for pt in weight_pt:
weight_sum += math.pow(dis(center, points[pt]), -power)
value_sum += math.pow(dis(center, points[pt]), -power) * list_pts_3d[pt][2]
return (value_sum / weight_sum) if weight_sum != 0 else 0
def idw_interpolation(list_pts_3d, jparams):
"""
!!! TO BE COMPLETED !!!
Function that writes the output raster with IDW
Input:
list_pts_3d: the list of the input points (in 3D)
jparams: the parameters of the input for "idw"
Output:
(output file written to disk)
"""
bbox = bounding_box(list_pts_3d)
power = jparams['power']
radius1 = jparams['radius1']
radius2 = jparams['radius2']
angle = jparams['angle']
max_points = jparams['max_points']
min_points = jparams['min_points']
cellsize, nrows, ncols = cal_col_row_size(list_pts_3d, jparams)
raster = np.zeros((nrows, ncols))
points = Point2D(list_pts_3d)
kd = scipy.spatial.KDTree(points)
dt = scipy.spatial.Delaunay(points)
for i in range(nrows):
for j in range(ncols):
center = cal_raster_center(bbox, i, j, nrows, cellsize)
weight = cal_weight(dt, center, kd, radius1, radius2, power, list_pts_3d)
raster[i][j] = weight
# print("cellsize:", jparams['cellsize'])
output_file(raster, jparams['output-file'], list_pts_3d, jparams)
print("File written to", jparams['output-file'])
def cal_tri_area(pt1, pt2, pt3):
a = dis(pt1, pt2)
b = dis(pt1, pt3)
c = dis(pt2, pt3)
if a+b<=c or a+c<=b or b + c <= a: return 0
s = (a+b+c)/2
area = math.sqrt(s*(s-a)*(s-b)*(s-c))
return area
def cal_tin_value(dt, center, list_pts_3d):
pt = []
z_value = []
index = scipy.spatial.Delaunay.find_simplex(dt, center)
if index == -1:
return nodata_value
if len(dt.simplices) == 0:
return nodata_value
pt.append((list_pts_3d[dt.simplices[index][0]][0], list_pts_3d[dt.simplices[index][0]][1]))
pt.append((list_pts_3d[dt.simplices[index][1]][0], list_pts_3d[dt.simplices[index][1]][1]))
pt.append((list_pts_3d[dt.simplices[index][2]][0], list_pts_3d[dt.simplices[index][2]][1]))
z_value.append(list_pts_3d[dt.simplices[index][0]][2])
z_value.append(list_pts_3d[dt.simplices[index][1]][2])
z_value.append(list_pts_3d[dt.simplices[index][2]][2])
area_0 = cal_tri_area(center, pt[1], pt[2])
area_1 = cal_tri_area(center, pt[2], pt[0])
area_2 = cal_tri_area(center, pt[0], pt[1])
raster_value = (area_0 * z_value[0] + area_1 * z_value[1] + area_2 * z_value[2]) / (area_0 + area_1 + area_2)
return raster_value
def tin_interpolation(list_pts_3d, jparams):
bbox = bounding_box(list_pts_3d)
points = Point2D(list_pts_3d)
cellsize, nrows, ncols = cal_col_row_size(list_pts_3d, jparams)
raster = np.zeros((nrows, ncols))
points = Point2D(list_pts_3d)
dt = scipy.spatial.Delaunay(points)
kd = scipy.spatial.KDTree(points)
time = 0
for i in range(nrows):
for j in range(ncols):
center = cal_raster_center(bbox, i, j, nrows, cellsize)
raster[i][j] = cal_tin_value(dt, center, list_pts_3d)
print(time)
time = time + 1
output_file(raster, jparams['output-file'], list_pts_3d, jparams)
print("File written to", jparams['output-file'])
def create_voronoi(center, list_pts_3d, dt):
points = Point2D(list_pts_3d)
index = scipy.spatial.Delaunay.find_simplex(dt, center)
if index == -1:
return nodata_value
neigh=dt.neighbors[index]
neighbor_coord=[]
neighbor_distance=[]
for i in neigh:
if i == -1:
continue
else:
neighbor_distance.append(dis(center,dt.points[i]))
neighbor_coord.append(dt.points[i])
voro_pt=[]
for item in neighbor_coord:
voro_pt.append(list(item))
voro_pt.append(center)
voro=scipy.spatial.Voronoi(voro_pt)
ver=voro.vertices
dict=voro.ridge_dict
ridge=voro.points
index=scipy.spatial.Delaunay.find_simplex(dt,center)
def laplace_interpolation(list_pts_3d, jparams):
bbox = bounding_box(list_pts_3d)
points = Point2D(list_pts_3d)
cellsize, nrows, ncols = cal_col_row_size(list_pts_3d, jparams)
raster = np.zeros((nrows, ncols))
points = Point2D(list_pts_3d)
dt = scipy.spatial.Delaunay(points)
kd = scipy.spatial.KDTree(points)
time = 0
for i in range(nrows):
for j in range(ncols):
center = cal_raster_center(bbox, i, j, nrows, cellsize)
value = create_voronoi(center, list_pts_3d, dt)
print("File written to", jparams['output-file'])