-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathtest_demo.py
309 lines (259 loc) · 11.9 KB
/
test_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import os, time, argparse, pickle, cv2
import numpy as np, matplotlib.pyplot as plt
import tensorflow as tf
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
parser = argparse.ArgumentParser(description='Training script.')
parser.add_argument('-n', '--network', type=str, default='', required=True, help='The path of a checkpoint to be loaded.')
parser.add_argument('-m', '--mean', action='store_true',help='Whether expected free energy should be calculated using the mean instead of sampling..')
parser.add_argument('-d', '--duration', type=int, default=50001, help='Duration of experiment.')
parser.add_argument('-method', '--method', type=str, default='mcts', help='Pre-select method used by the agent for action selection. Available: t1, t12, ai, mcts or habit!')
parser.add_argument('-steps', '--steps', type=int, default=7, help='How many steps ahead the agent can imagine!')
parser.add_argument('-temp', '--temperature', type=float, default=1, help='Initialize testing routine!')
parser.add_argument('-jumps', '--jumps', type=int, default=5, help='Mental jumps: How many steps ahead the agent has learnt to predict in a singe step!')
# MCTS
parser.add_argument("-C", "--C", type=float, help="MCTS parameter: C: Balance between exploration and exploitation..", default=1.0)
parser.add_argument("-repeats", "--repeats", type=int, help="MCTS parameter: Simulation repeats", default=300)
parser.add_argument("-threshold", "--threshold", type=float, help="MCTS parameter: Threshold to make decision prematurely", default=0.5)
parser.add_argument("-depth", "--depth", type=int, help="MCTS parameter: Simulation depth", default=3)
parser.add_argument("-no_habit", "--no_habit", action='store_true', help="MCTS parameter: Disable habitual control as a first choice of the MCTS algorithm.")
args = parser.parse_args()
if args.network[-1] in ['/', '\\']:
args.network = args.network[:-1]
# If the machine used does not have enough memory, make this True
if True:
from tensorflow.compat.v1 import ConfigProto
from tensorflow.compat.v1 import InteractiveSession
config = ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.8
config.gpu_options.allow_growth = True
session = InteractiveSession(config=config)
from game_environment import Game
import src.util as u
import src.tfutils as tfu, mcts
from src.tfmodel import ActiveInferenceModel
params = mcts.MCTS_Params()
params.C = args.C
params.repeats = args.repeats
params.threshold = args.threshold
params.simulation_depth = args.depth
params.use_habit = args.no_habit
game = Game(1)
s_dim = 10; pi_dim = 4; BATCH_SIZE = 1
model = ActiveInferenceModel(s_dim=s_dim, pi_dim=pi_dim, gamma=1.0, beta_s=1.0, beta_o=1.0, colour_channels=1, resolution=64)
model.load_all(args.network)
cv2.namedWindow('demo', cv2.WINDOW_NORMAL)
cv2.resizeWindow('demo', 500, 500)
game.randomize_environment(0)
game.current_s[0,-1] = 0.0
pi0 = np.array([0.2,0.2,0.2,0.2,0.2])
o0 = game.current_frame(0).reshape(1,64,64,1)
qs0_mean, qs0_logvar = model.model_down.encoder(o0)
s0 = model.model_down.reparameterize(qs0_mean, qs0_logvar)
duration_of_experiment = 1000
duration_of_round = 100
CURRENT_STATES = np.zeros((duration_of_experiment, game.current_s.shape[1]))
last_pi = None
G = np.zeros(4)
term0 = np.zeros(4)
term1 = np.zeros(4)
term2 = np.zeros(4)
executing_steps = []
if args.method in ['t1','t12','ai','habit']:
if args.steps == -1:
args.steps = 10
samples = 10
else:
if args.steps == -1:
args.steps = 1
samples = 1
COLOR = False
def softmax(x, temp):
e_x = np.exp(x/temp)
return e_x/e_x.sum(axis=0)
def make_mask(all_paths, pos_x, pos_y):
mask = np.zeros((32,32))
for path in all_paths:
turtle_x = pos_x
turtle_y = pos_y
for p_i in path:
if p_i == 0: # up
for _ in range(args.jumps):
if turtle_x < 31:
turtle_x += 1
mask[turtle_x,turtle_y] += 1.0
elif p_i == 1: # down
for _ in range(args.jumps):
if turtle_x > 0:
turtle_x -= 1
mask[turtle_x,turtle_y] += 1.0
elif p_i == 2: # left
for _ in range(args.jumps):
if turtle_y < 31:
turtle_y += 1
mask[turtle_x,turtle_y] += 1.0
elif p_i == 3: # right
for _ in range(args.jumps):
if turtle_y > 0:
turtle_y -= 1
mask[turtle_x,turtle_y] += 1.0
return mask / mask.max()
start_time = time.time()
t = 0
while t < args.duration:
CURRENT_STATES[int(t%duration_of_experiment)] = game.current_s[0]
if args.method in ['t1','t12','ai','mcts','habit']:
if (t%duration_of_experiment) == 0 and t > 0:
print(t, 'ROUND SCORE:',game.get_reward(0), 't:', time.time()-start_time)
game.current_s[0,6] = 0.0
start_time = time.time()
if (t%duration_of_round) == 0:
temp_score = game.current_s[0,6]
game.randomize_environment(0)
game.current_s[0,6] = temp_score
executing_steps = []
if len(executing_steps) == 0:
# Get observation from the environment
o_single = game.current_frame(0)
if args.method == 'habit':
qs_mean, _ = model.model_down.encoder(o_single.reshape(1,64,64,1))
_, Qpi, _ = model.model_top.encode_s(qs_mean)
Qpi_choices = Qpi.numpy()[0]
G_choices = [0.0,0.0,0.0,0.0]
R_choices = [0.0,0.0,0.0,0.0]
elif args.method == 'mcts':
mcts_path, repeats_done, states_explored, all_paths, all_paths_G = mcts.active_inference_mcts(model=model, frame=o_single, params=params, o_shape=(64,64,1))
path_pos_x = int(game.current_s[0,5])
path_pos_y = int(game.current_s[0,4])
mask = make_mask(all_paths, path_pos_x, path_pos_y)
G = term0 = term1 = term2 = np.zeros(4)
R_choices = term12_choices = G_choices = np.array([0.0,0.0,0.0,0.0])
else:
o1 = np.zeros([4,64,64,1],dtype=np.float32)
o1[0] = o_single
o1[1] = o_single
o1[2] = o_single
o1[3] = o_single
sum_G, sum_terms, po2 = model.calculate_G_4_repeated(o1, steps=args.steps, samples=samples, calc_mean=args.mean)
G = sum_G.numpy() / float(args.steps)
term0 = -sum_terms[0].numpy() / float(args.steps)
term1 = sum_terms[1].numpy() / float(args.steps)
term2 = sum_terms[2].numpy() / float(args.steps)
R_choices = softmax(-term0,args.temperature)
term12_choices = softmax(-(term0+term1),args.temperature)
G_choices = softmax(-G,args.temperature)
try:
if args.method == 'ai':
pi = np.random.choice(4,p=G_choices)
for _ in range(args.steps):
for _ in range(args.jumps):
executing_steps.append(pi)
if args.method == 'mcts':
for pp in mcts_path:
for _ in range(args.jumps):
executing_steps.append(pp)
elif args.method == 't12':
pi = np.random.choice(4,p=term12_choices)
for _ in range(args.steps):
for _ in range(args.jumps):
executing_steps.append(pi)
elif args.method == 't1':
pi = np.random.choice(4,p=R_choices)
for _ in range(args.steps):
for _ in range(args.jumps):
executing_steps.append(pi)
elif args.method == 'habit':
pi = np.random.choice(4,p=Qpi_choices)
for _ in range(args.steps):
executing_steps.append(pi)
except:
print('Not executing anything')
executing_steps = []
if len(executing_steps) > 0:
pi = executing_steps[0]
changed = False
if pi == 0: changed = game.up(0)
if pi == 1: game.down(0)
if pi == 2: game.left(0)
if pi == 3: game.right(0)
if changed:
executing_steps = []
else:
# pop front..
executing_steps = executing_steps[1:]
frame = game.current_frame(0)
frame[59:63,31] = 1.0
if args.method == 'mcts':
frame[16:48,16:48] += mask.reshape(32,32,1)
if COLOR: frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
frame = cv2.resize(frame, (500, 500), interpolation=cv2.INTER_NEAREST)
frame = cv2.putText(frame, 'score: '+str(game.get_reward(0)) + ' ('+str(float(duration_of_experiment)*game.get_reward(0)/float(t))+')', (15,25), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255,255,255), 2, cv2.LINE_AA)
frame = cv2.putText(frame, 's: '+str(game.current_s[0]), (15,50), cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255,255,255), 1, cv2.LINE_AA)
if args.method != 'mcts':
frame = cv2.putText(frame, 'G: '+str(np.around(G,2)), (15,70), cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255,255,255), 1, cv2.LINE_AA)
frame = cv2.putText(frame, 'Term a: '+str(np.around(term0-term0.min(),2)), (15,100), cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255,255,255), 1, cv2.LINE_AA)
frame = cv2.putText(frame, 'Term b: '+str(np.around(term1-term1.min(),2)), (15,120), cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255,255,255), 1, cv2.LINE_AA)
frame = cv2.putText(frame, 'Term c: '+str(np.around(term2-term2.min(),2)), (15,140), cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255,255,255), 1, cv2.LINE_AA)
frame = cv2.putText(frame, 'softmax(term a): '+str(np.around(R_choices,2)), (15,170), cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255,255,255), 1, cv2.LINE_AA)
frame = cv2.putText(frame, 'softmax(terms a+b): '+str(np.around(term12_choices,2)), (15,190), cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255,255,255), 1, cv2.LINE_AA)
frame = cv2.putText(frame, 'softmax(G): '+str(np.around(G_choices,2)), (15,210), cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255,255,255), 1, cv2.LINE_AA)
cv2.imshow('demo', frame)
# -- KEYBOARD SHORTCUTS ------------------------------------------------
k = cv2.waitKey(30)
if k == ord('q') or k == 27: # ESC
break
elif k == ord('m'):
args.mean = not args.mean
print('Using mean:',args.mean)
elif k in [ord('s')]:
last_pi = 0
game.up(0)
elif k in [ord('w')]:
last_pi = 1
game.down(0)
elif k in [ord('d')]:
last_pi = 2
game.left(0)
elif k in [ord('a')]:
last_pi = 3
game.right(0)
elif k == ord('r'):
game.current_s[0,6] = 0.0
t = 0
print('Restart scoring')
elif k == ord('1'):
args.method = 'mcts'
print('Active inference with full-scale planner in control (all terms of G used)')
elif k == ord('2'):
args.method = 'ai'
print('1-step active inference in control (all terms of G used)')
elif k == ord('3'):
args.method = 'habit'
print('Habitual mode')
elif k == ord('4'):
args.method = 'no'
print('Stopped. You can control the agent now!')
elif k == ord('5'):
args.method = 't1'
print('Term a in control (reward-based agent)')
elif k == ord('6'):
args.method = 't12'
print('Terms a+b in control')
elif k in [ord('o'),ord('[')]:
if args.steps > 1:
args.steps -= 1
print("STEPS",args.steps)
elif k in [ord('p'),ord(']')]:
args.steps += 1
print("STEPS",args.steps)
elif k == ord('8'):
if args.temperature > 5.0:
args.temperature -= 5.0
print('Temperature for softmax:', args.temperature)
elif k == ord('9'):
args.temperature += 5.0
print('Temperature for softmax:', args.temperature)
t += 1
cv2.destroyAllWindows()
exit('Exiting ok...!')
#