forked from linyicheng1/LET-NET
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtracking.cpp
175 lines (139 loc) · 5.32 KB
/
tracking.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#include "tracking.h"
void corner_tracking::update(const cv::Mat& score, const cv::Mat& desc) {
if (trackedPoints.empty()) {// first frame
trackedPoints = extractFeature(score);
trackedPointsHistory.resize(trackedPoints.size());
for (size_t i = 0; i < trackedPoints.size(); i++) {
trackedPointsHistory[i].push_back(trackedPoints[i]);
}
} else {
std::vector<cv::Point2f> trackedPointsNew;
std::vector<uchar> status;
std::vector<float> err;
cv::calcOpticalFlowPyrLK(
prevDesc,
desc,
trackedPoints,
trackedPointsNew,
status,
err);
std::vector<cv::Point2f> tracked = {};
std::vector<std::vector<cv::Point2f>> trackedHistory = {};
for (size_t i = 0; i < status.size(); i++) {
if (status[i]) {
tracked.push_back(trackedPointsNew[i]);
trackedPointsHistory[i].push_back(trackedPointsNew[i]);
if (trackedPointsHistory[i].size() > 5) {
trackedPointsHistory[i].erase(trackedPointsHistory[i].begin());
}
trackedHistory.push_back(trackedPointsHistory[i]);
}
}
std::vector<cv::Point2f> add = extractFeature(score, 20, tracked);
std::vector<std::vector<cv::Point2f>> add_history(add.size());
for (size_t i = 0; i < add.size(); i++) {
add_history[i].push_back(add[i]);
}
trackedPoints.clear();
trackedPointsHistory.clear();
trackedPoints.insert(trackedPoints.end(), tracked.begin(), tracked.end());
trackedPoints.insert(trackedPoints.end(), add.begin(), add.end());
trackedPointsHistory.insert(trackedPointsHistory.end(), trackedHistory.begin(), trackedHistory.end());
trackedPointsHistory.insert(trackedPointsHistory.end(), add_history.begin(), add_history.end());
}
prevDesc = desc;
}
void corner_tracking::show(cv::Mat &img) {
for (auto& p : trackedPoints) {
cv::circle(img, p, 2, cv::Scalar(0, 255, 0), -1);
}
for (auto& history : trackedPointsHistory) {
for (size_t i = 1; i < history.size(); i++) {
cv::line(img, history[i - 1], history[i], cv::Scalar(0, 0, 255), 1);
}
}
cv::imshow("tracking", img);
}
std::vector<cv::Point2f> corner_tracking::extractFeature(
const cv::Mat& score,
int ncellsize,
const std::vector<cv::Point2f>& vcurkps)
{
if (score.empty()) {
return std::vector<cv::Point2f>();
}
size_t ncols = score.cols;
size_t nrows = score.rows;
size_t nhalfcell = ncellsize / 4;
size_t nhcells = nrows / ncellsize;
size_t nwcells = ncols / ncellsize;
size_t nbcells = nhcells * nwcells;
std::vector<cv::Point2f> vdetectedpx;
vdetectedpx.reserve(nbcells);
std::vector<std::vector<bool>> voccupcells(
nhcells + 1,
std::vector<bool>(nwcells + 1, false)
);
cv::Mat mask = cv::Mat::ones(score.rows, score.cols, CV_8UC1);
for (const auto& px : vcurkps) {
voccupcells[px.y / ncellsize][px.x / ncellsize] = true;
cv::circle(mask, px, nhalfcell, cv::Scalar(0.), -1);
}
size_t nboccup = 0;
std::vector<std::vector<cv::Point2f>> vvdetectedpx(nbcells);
std::vector<std::vector<cv::Point2f>> vvsecdetectionspx(nbcells);
auto cvrange = cv::Range(0, nbcells);
parallel_for_(cvrange, [&](const cv::Range& range)
{
for (int i = range.start; i < range.end; i ++) {
size_t r = floor(i / nwcells);
size_t c = i % nwcells;
if( voccupcells[r][c] ) {
nboccup++;
continue;
}
size_t x = c*ncellsize;
size_t y = r*ncellsize;
cv::Rect hroi(x,y,ncellsize,ncellsize);
if( x+ncellsize < ncols-1 && y+ncellsize < nrows-1 ) {
double dminval, dmaxval;
cv::Point minpx, maxpx;
cv::minMaxLoc(score(hroi).mul(mask(hroi)), &dminval, &dmaxval, &minpx, &maxpx);
maxpx.x += x;
maxpx.y += y;
if( dmaxval >= 0.2) {
vvdetectedpx.at(i).push_back(maxpx);
cv::circle(mask, maxpx, nhalfcell, cv::Scalar(0.), -1);
}
cv::minMaxLoc(score(hroi).mul(mask(hroi)), &dminval, &dmaxval, &minpx, &maxpx);
maxpx.x += x;
maxpx.y += y;
if( dmaxval >= 0.2)
{
vvsecdetectionspx.at(i).push_back(maxpx);
cv::circle(mask, maxpx, nhalfcell, cv::Scalar(0.), -1);
}
}
}
});
for (const auto& vpx:vvdetectedpx) {
if (!vpx.empty()) {
vdetectedpx.insert(vdetectedpx.end(), vpx.begin(), vpx.end());
}
}
size_t nbkps = vdetectedpx.size();
if (nbkps + nboccup < nbcells) {
size_t nbsec = nbcells - nbkps - nboccup;
size_t k = 0;
for (const auto &vseckp : vvsecdetectionspx) {
if (!vseckp.empty()) {
vdetectedpx.push_back(vseckp.back());
k ++;
if (k == nbsec) {
break;
}
}
}
}
return vdetectedpx;
}