-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathseedb_model_selectivity.m
89 lines (83 loc) · 3.14 KB
/
seedb_model_selectivity.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
clear; clf;
close all;
% The SeeDB Figure 1 can be modeled as a generative process:
% (1) Shuffle equal number of black and white balls uniformly at random,
% and lay them out as a sequence. The total number of balls is N.
% (2) Pick a ball indexed at I according to Binomial distribution of
% Bin(N,0.5).
% (3) What is the probability that the balls to the left of I have more
% black than white balls by a margin? (Or vice versa for symmetry).
%
% This process can model the chance of deviation of target query from the
% reference query (default one) as in SeeDB Figure 1.
% // Target query
% SELECT col2, avg(col3)
% FROM table
% WHERE col1 = 1
% GROUP BY col2
% // Reference query 1 (in Figure 1)
% SELECT col2, avg(col3)
% FROM table
% WHERE col1 = 0
% GROUP BY col2
% // Reference query 2 (default one)
% SELECT col2, avg(col3)
% FROM table
% GROUP BY col2
%
% Note the interpretation of the process:
% - The avg(col3) becomes sum(col3) and col3 contains all 1's.
% - The filter condition on col1 can be seen as picking I, where balls to
% the left of I is filtered.
% The reason why I is not always N/2 is because
% - I ~ Bin(N, 0.5) is for the case of col0 having two values. For more
% values, I can be modeled as a multinomial random variable.
% - The default reference query 2 as modeled in the process is not random,
% because there are equal number of white and black balls in total.
%
% Controlling variables:
% - col3 is not a constant 1.
% - I is multinomial random variable.
p_seedb = []; % columns for different k, rows for different trials
N_white = 500;
N_black = N_white;
N = N_white + N_black;
p_col2_1 = 0.5; % P(col2 = 1) = 0.5
k = 6;
cards = [k, 2, 1];
% I ~ Multi(N, [p_col0_0, p_col0_1, ... ])
% Univariate marginal of multinomial is binomial: Xi ~ Bin(n, pi)
%p_k = 1 / cards(1) * ones(1, cards(1));
%Is = mnrnd(N, p_k);
%I = Is(1);
p_k = 1 / cards(1);
I = 1:N; % ignore the case I=0, no selected tuples
P_I = binopdf(I, N, p_k); % Pr(I = {0, ..., N}), i.e. probabilities of different selectivities given cardinality
pdf_dev = [];
for i = I
% sum_i P(I=i)P(dev>SeeDB | I=i)
% times 2 because either black ball's bar or white ball's bar
% can cause the deviation.
% devation: X ball's bar / i < 758 / 1657, so X ball's bar < i * 758 / 1657
% The probability of that is cumulative binomial of (x=num
% xballs, N=total balls, p=prob of xball).
pdf_dev = [pdf_dev, 2 * binocdf(floor(i * (758 / 1657)), i, p_col2_1)]; % col2 is independent from col1, so p(col2=1 | I) = p(col2=1)
end
fh = figure;
fh.Position = [0, 0, 600, 350];
hold on;
xticks = I ./ N;
bar(xticks, pdf_dev, 'black');
ylim([0, 1]);
xlim([0, 1]);
%errorbar(xticks, avg_p_seedb, std_p_seedb, 'r.');
xlabel('Target query selectivity');
ylabel('probability');
ax = gca;
%ax.XTick = xticks;
%ax.XTickLabel = strtrim(cellstr(num2str(K'))');
ax.FontSize = 20;
title('False Discovery vs Target Query Selectivity');
desc = 'Reference view on base table; deviation>0.28; card.=6';
legend(desc, 'location', 'SouthOutside');
hold off;