-
Notifications
You must be signed in to change notification settings - Fork 70
/
Copy pathAudioSampleReader.py
87 lines (82 loc) · 3.35 KB
/
AudioSampleReader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
'''
Class AudioSampleReader:
read in a single audio sample for test
'''
import numpy as np
import librosa
from numpy.lib import stride_tricks
import ipdb
import os
import matplotlib as mpl
mpl.use('agg')
from matplotlib import pyplot as plt
from GlobalConstont import *
def stft(sig, frameSize, overlapFac=0.75, window=np.hanning):
""" short time fourier transform of audio signal """
win = window(frameSize)
hopSize = int(frameSize - np.floor(overlapFac * frameSize))
# zeros at beginning (thus center of 1st window should be for sample nr. 0)
# samples = np.append(np.zeros(np.floor(frameSize / 2.0)), sig)
samples = np.array(sig, dtype='float64')
# cols for windowing
cols = np.ceil((len(samples) - frameSize) / float(hopSize)) + 1
# zeros at end (thus samples can be fully covered by frames)
samples = np.append(samples, np.zeros(frameSize))
frames = stride_tricks.as_strided(
samples,
shape=(cols, frameSize),
strides=(samples.strides[0] * hopSize, samples.strides[0])).copy()
frames *= win
return np.fft.rfft(frames)
class AudioSampleReader(object):
'''
Class AudioSampleReader:
read in a single audio sample for test using trained model
'''
def __init__(self, data_dir):
'''Load in the audio file and transform the signal into
the formats required by the model'''
# loading and transformation
speech_mix, _ = librosa.load(data_dir, SAMPLING_RATE)
speech_mix_spec0 = stft(speech_mix, FRAME_SIZE)[:, :NEFF]
speech_mix_spec = np.abs(speech_mix_spec0)
speech_phase = speech_mix_spec0 / speech_mix_spec
speech_mix_spec = np.maximum(
speech_mix_spec, np.max(speech_mix_spec) / MIN_AMP)
speech_mix_spec = 20. * np.log10(speech_mix_spec * AMP_FAC)
max_mag = np.max(speech_mix_spec)
speech_VAD = (speech_mix_spec > (max_mag - THRESHOLD)).astype(int)
speech_mix_spec = (speech_mix_spec - GLOBAL_MEAN) / GLOBAL_STD
len_spec = speech_mix_spec.shape[0]
k = 0
self.ind = 0
self.samples = []
# feed the transformed data into a sample list
while(k + FRAMES_PER_SAMPLE < len_spec):
phase = speech_phase[k: k + FRAMES_PER_SAMPLE, :]
sample_mix = speech_mix_spec[k:k + FRAMES_PER_SAMPLE, :]
VAD = speech_VAD[k:k + FRAMES_PER_SAMPLE, :]
sample_dict = {'Sample': sample_mix,
'VAD': VAD,
'Phase': phase}
self.samples.append(sample_dict)
k = k + FRAMES_PER_SAMPLE
# import ipdb; ipdb.set_trace()
n_left = FRAMES_PER_SAMPLE - len_spec + k
# store phase for waveform reconstruction
phase = np.concatenate((speech_phase[k:, :], np.zeros([n_left, NEFF])))
sample_mix = np.concatenate(
(speech_mix_spec[k:, :], np.zeros([n_left, NEFF])))
VAD = np.concatenate((speech_VAD[k:, :], np.zeros([n_left, NEFF])))
sample_dict = {'Sample': sample_mix,
'VAD': VAD,
'Phase': phase}
self.samples.append(sample_dict)
self.tot_samp = len(self.samples)
def gen_next(self):
# ipdb.set_trace()
begin = self.ind
if begin >= self.tot_samp:
return None
self.ind += 1
return [self.samples[begin]]