-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmsrigs_simulation_mainexperiment.py
602 lines (582 loc) · 30.6 KB
/
msrigs_simulation_mainexperiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
# Multi-Stage Re-Identification (MSRI) Game Solver (GS) v1.1
# Component: MSRIGS Using Simulated Datasets (Data subjects have different strategies)
# Copyright 2018-2021 Zhiyu Wan, HIPLAB, Vanderilt University
# Compatible with python 3.8.5. Package dependencies: Numpy 1.19.1, Scikit-learn 0.23.2, Pandas 1.1.3, Matplotlib 3.3.1,
# Seaborn 0.11.0, and SciPy 1.5.2
# Update history:
# Added the surname inference algorithm from the paper "Identifying personal genomes by surname inference", Science 2013
# Nov 19, 2018: Added 3 global dictionaries for distance and confidence score computation;
# Nov 19, 2018: Deleted mulist, xlist; Let etmrca function be more efficient by using cache and pre-computing
# Nov 21, 2018: Added a global dictionary for attack simulation computation
# Nov 23, 2018: Utility for each attribute is proportional to entropy
# Nov 27, 2018: Adding generalization strategies for age and state attributes
# Dec 2, 2018: Adding weight vector for utility, and adding missing data to G
# Dec 17, 2018: Individual-wise defense strategy
# Dec 17, 2018: Adding a surname inference dictionary
# Jan 23, 2019: Deleting the dictionary for defense computation
# March 18, 2019: Fixing a bug regarding tuple_x (all changed to tuple_x_selection)
# March 12, 2020: 3)save detailed results!
# 4)add the scenario of data masking! 5)add the scenario that only opt-in or opt-out!
# 6)add the attacker's cost (attack rate * c)! 7)add the defender's cost (L*pa)!
# March 17, 2020: 8)consider the scenario of always_attack
# March 18, 2020: 2)fix the total utility for various m
# March 19, 2020: 1)threshold for theta
# April 16, 2020: To plot privacy and utility. To plot error bar.
# April 19, 2020: clean the code
# April 21, 2020: functions been moved out, changed optimal defense output
# April 21, 2020: 1) output all data points instead of just average values. 2)deleted "defense_mode" and "n_cost"
# April 23, 2020: 1) add "reorder_genome" var, 2) add method 3&4 in functions
# May 9, 2020: add the non-zero x_nz and non-zero mu_nz and add mu1 and mu2 in the conf_score function
# May 10, 2020: tol = 0.2. theta_p = 0.45
# July 10, 2020: theta_p = 0.5
# July 11, 2020: Modify one scenario, and add three new scenarios.
# July 12, 2020: Rename saved file.
# July 28, 2020: Add alternative weight distributions.
# July 31, 2020: Add brute-force algorithm and pruning tech.
# Aug 11, 2020: Simplify arguments (scenario instead of no_defense, in_out, no_geno and random_protection)
# Aug 11, 2020: change output filename
# Aug 20, 2020: accelerate: 1) vectorize surname inference, 2) update dic_attack, 3) change the way to handle mask.
# Aug 23, 2020: update dic_attack (one for each iteration).
# Sep 23, 2020: fix the missing rate.
# Oct 10, 2020: Add the no-attack masking game.
# Oct 20, 2020: Add more options: short_memory, save_iter, and start_iter.
# March 31, 2021: Allow customized strategy.
# April 21, 2021: Change the way to compute the utility function again
import numpy as np
import time
import pandas as pd
import msrigs_functions as sf
import os.path
import pickle
import sys
# configuration
id_exp = '2058' # ID for the set of experiments
start_iter: int = 0 # start from a particular iteration (default: 0)
n_iter: int = 100 # (default: 100)
n_f: int = 20 # number of firstnames (not used)
n_I: int = 20000 # size of the identified dataset (<=90000) (default: 20000)
n_S: int = 1000 # size of the sensitive dataset (<=90000) (default: 1000)
n_G: int = 20000 # size of the genetic genealogy dataset (<=90000) (default: 20000)
rate_s = 0.6 # rate of sensitive (not used)
loss = 150 # (default: 150)
cost = 10 # (default: 10)
base_utility = 100 # (default: 100)
theta_p = 0.5 # (default: 0.5)
method: int = 2 # (default: 2)
m_g: int = 12 # (<=16) (default: 12)
weight = np.concatenate((np.ones(2) * 1, np.ones(m_g)), axis=None)
missing_level = 0.3 # (default: 0.3)
over_confident: int = 0 # (default: 0)
alter_weight: int = 0 # *0: Based on information entropy. 1: Uniform. 2: Special (the weight of 1st 2 geno features is 10x).
algorithm: int = 0 # *0: greedy algorithm. 1: brute-force algorithm.
pruning: int = 1 # (default: 1)
participation_rate = 0.05 # (default: 0.05)
random_masking_rate = 0.15 # (default: 0.15) probability of sharing in the random masking scenario
alpha = 0 # minority-support factor. 0: original, 1:recommended, >0: minority oriented, <0: majority oriented.
save_opt_strategy: bool = True # save optimal strategies (to csv file) for all data subjects (default: True)
log_opt_strategy: bool = False # log optimal strategies (to pickle file) for all data subjects (default: False)
save_dic: bool = False # save all dictionaries into files in the end (default: False)
load_dic: bool = False # load all global dictionaries (dic_dist, dic_score, dic_score_solo) in the beginning (default: False)
short_memory_dic: bool = False # refresh dictionaries in each iteration (no need to load/save dictionaries) (default: False)
short_local_memory_dic: bool = False # refresh local dictionaries (attack, surname) for each subject (default: False)
save_iter: bool = False # save results in each iteration (different file names) (default: False)
save_S: bool = True # save S in each iteration (only work for scenario 0) (default: True)
save_G: bool = True # save G in each iteration (only work for scenario 0) (default: True)
save_I: bool = True # save I in each iteration (only work for tested_scenario 0) (default: True)
save_beta: bool = True # save beta and total utility in each iteration (only work for scenario 0) (default: True)
save_weighted_entropy: bool = True # save weighted entropy (only work for scenario 0) (default: True)
# choose a scenario
scenario = 0 # 0: no protection. 1: no genomic data sharing. 2: random opt-in. 3: random masking. 3.x: custom masking
# 3.1: k-anonymity. 4: opt-in game. 5: masking game. 6: no-attack masking game. 7: one-stage masking game.
# creat folders
folder_result = 'Results' + id_exp + '/Violin'
if over_confident == 0 and alter_weight == 0 and algorithm == 0:
folder_result += '/m'+str(method) + '/'
elif over_confident == 1 and alter_weight == 0 and algorithm == 0:
folder_result += '_over_confident/m' + str(method) + '/'
elif alter_weight != 0 and over_confident == 0 and algorithm == 0:
folder_result += '_multi_weight_distributions/Alter_weight_' + str(alter_weight) + '/m' + str(method) + '/'
elif algorithm == 1 and over_confident == 0 and alter_weight == 0:
folder_result += '_bf/'
else:
print('The configuration is not correct.')
if pruning == 1:
folder_result += 'pruning/'
# check the existence of the directory
folders = folder_result.rstrip('/').split('/')
folder = ''
for folder_name in folders:
folder += folder_name + '/'
if not os.path.exists(folder):
os.mkdir(folder)
mu = 1e-3 * np.array([2.381, 2.081, 1.781, 2.803, 2.298, 3.081, 0.552, 0.893, 1.498, 0.425, 5.762, 1.590,
4.769, 6.359, 3.754, 2.180]) # updated mutation rate in 2008
tol = 0.2
Ne = 10000
inv_Ne = 1.0 / Ne
T_Max = 200
I_selection = np.array([2, 3, -2]).astype(int)
if __name__ == '__main__':
start1 = time.time()
# Enable the input of parameters including start_iter and n_iter
if len(sys.argv) >= 2:
start_iter = int(sys.argv[1])
if len(sys.argv) >= 3:
n_iter = int(sys.argv[2])
if start_iter > 0: # start from the middle
save_iter = True
# # Initialize
surname = []
genome = []
ages = []
states = []
ID = []
n_r = []
# Initialize dictionaries
if load_dic and os.path.exists(folder_result + 'dic_dist.pkl'):
with open(folder_result + 'dic_dist.pkl', 'rb') as f1:
dic_dist = pickle.load(f1)
else:
dic_dist = {}
if load_dic and os.path.exists(folder_result + 'dic_score_solo.pkl'):
with open(folder_result + 'dic_score_solo.pkl', 'rb') as f1:
dic_score_solo = pickle.load(f1)
else:
dic_score_solo = {}
if load_dic and os.path.exists(folder_result + 'dic_score.pkl'):
with open(folder_result + 'dic_score.pkl', 'rb') as f1:
dic_score = pickle.load(f1)
else:
dic_score = {}
for i in range(3):
n = 0
f = open("data/simu/ped"+str(i+1)+".txt", "r")
f2 = open("data/simu/surname" + str(i + 1) + ".txt", "r")
f3 = open("data/simu/birth_year" + str(i + 1) + ".txt", "r")
f4 = open("data/simu/state" + str(i + 1) + ".txt", "r")
for line in f.readlines():
line2 = f2.readline()
line3 = f3.readline()
line4 = f4.readline()
sname = int(float(line2.rstrip("\n"))) #
age = 2020-int(float(line3.rstrip("\n")))
state = int(float(line4.rstrip("\n")))
loci = line.rstrip("\n").split(" ")
if loci[3] == 'M':
n += 1
y1 = []
for j in range(len(loci)):
if j == 0:
ID.append(int(loci[j]))
elif j >= 5 and j % 2 == 0:
y1.append(int(loci[j]))
genome.append(y1)
surname.append(sname)
ages.append(age)
states.append(state)
n_r.append(n)
f.close()
f2.close()
f3.close()
f4.close()
if not save_iter:
array_optimal_payoff = np.empty(n_iter * n_S)
array_optimal_attacker_payoff = np.empty(n_iter * n_S)
array_privacy = np.empty(n_iter * n_S)
array_utility = np.empty(n_iter * n_S)
array_success_rate = np.empty(n_iter * n_S)
array_usefulness = np.empty(n_iter)
array_fairness_wrt_payoff = np.empty(n_iter)
array_fairness_wrt_privacy = np.empty(n_iter)
array_fairness_wrt_utility = np.empty(n_iter)
array_fairness_wrt_usefulness = np.empty(n_iter)
sum_opt_strategy = np.zeros(m_g + 2)
if log_opt_strategy or save_opt_strategy:
array_attack = np.empty(n_iter * n_S).astype(bool)
list_opt_strategy = []
pickle_filename = folder_result + 'result_s' + str(scenario) + '.pickle'
pickle_filename2 = folder_result + 'result2_s' + str(scenario) + '.pickle'
filename = folder_result + 'log_s' + str(scenario) + '.txt'
f = open(filename, 'w')
elapsed1 = (time.time() - start1)
start2 = time.time()
for i in range(start_iter, start_iter + n_iter):
if save_iter:
start2 = time.time()
array_optimal_payoff = np.empty(n_S)
array_optimal_attacker_payoff = np.empty(n_S)
array_privacy = np.empty(n_S)
array_utility = np.empty(n_S)
array_success_rate = np.empty(n_S)
array_usefulness = np.empty(1)
array_fairness_wrt_payoff = np.empty(1)
array_fairness_wrt_privacy = np.empty(1)
array_fairness_wrt_utility = np.empty(1)
array_fairness_wrt_usefulness = np.empty(1)
sum_opt_strategy = np.zeros(m_g + 2)
if log_opt_strategy or save_opt_strategy:
array_attack = np.empty(n_S).astype(bool)
list_opt_strategy = []
pickle_filename = folder_result + 'result_s' + str(scenario) + '_i' + str(i) + '.pickle'
pickle_filename2 = folder_result + 'result2_s' + str(scenario) + '_i' + str(i) + '.pickle'
filename = folder_result + 'log_s' + str(scenario) + '_i' + str(i) + '.txt'
f = open(filename, 'w')
print('iter: ', i)
np.random.seed(i) # reset random number generator for comparison
World = sf.build_world(ID, genome, surname, ages, states, n_r, n_f, rate_s)
(S, I, G2) = sf.generate_datasets(World, n_I, n_S, n_G) #G2 has ground truth
# ID, first name, ages, states, genomic attributes, surname, sensitive
# save S
if save_S and scenario == 0:
if not os.path.exists(folder_result + 'target_data'):
os.mkdir(folder_result + 'target_data')
header = "YOB,State"
for j in range(m_g):
header += ",STR" + str(j+1)
np.savetxt(folder_result + 'target_data/i' + str(i) + '.csv', S[:, 2:(2+m_g+2)], delimiter=',', fmt='%d',
header=header, comments='')
# save I
if save_I and scenario == 0:
if not os.path.exists(folder_result + 'identified_data'):
os.mkdir(folder_result + 'identified_data')
header = "YOB,State,Surname"
np.savetxt(folder_result + 'identified_data/i' + str(i) + '.csv', I[:, [2, 3, (4 + m_g)]], delimiter=',',
fmt='%d', header=header, comments='')
# Add missing values
if missing_level > 0:
np.random.seed(i)
n_missing = int(n_G * m_g * missing_level)
missed = np.append(np.zeros(n_missing).astype(int), np.ones(n_G * m_g - n_missing).astype(int))
np.random.shuffle(missed)
G1 = np.multiply(G2[:, 4:(4 + m_g)], missed.reshape(n_G, m_g))
G = np.concatenate((G2[:, 0:4], G1, G2[:, -2:]), axis=1)
else:
G = G2
# save G
if save_G and scenario == 0:
if not os.path.exists(folder_result + 'genealogy_data'):
os.mkdir(folder_result + 'genealogy_data')
header = "STR1"
for j in range(m_g - 1):
header += ",STR" + str(j + 2)
header += ",Surname"
np.savetxt(folder_result + 'genealogy_data/i' + str(i) + '.csv',
G[:, 4:(4 + m_g + 1)], delimiter=',',
fmt='%d', header=header, comments='')
# Compute entropy
if alter_weight == 0:
entropy = []
for j in range(m_g + 2):
if j == 0 or j == 1: # entropy in demographic dataset
c = I[:, j + 2]
else: # entropy in genetic genealogy dataset
c = G[:, j + 2]
entropy.append(sf.get_entropy(c))
entropy = np.asarray(entropy)
weighted_entropy = np.multiply(entropy, weight)
elif alter_weight == 1:
weighted_entropy = weight
elif alter_weight == 2:
weighted_entropy = np.concatenate((np.ones(2), np.ones(2) * 10, np.ones(m_g - 2)), axis=None)
# f.write(str(i)+'-'+str(weighted_entropy) + '\n')
if save_weighted_entropy and scenario == 0: # save weighted entropy
if not os.path.exists(folder_result + 'weighted_entropy'):
os.mkdir(folder_result + 'weighted_entropy')
np.savetxt(folder_result + 'weighted_entropy/i' + str(i) + '.csv', weighted_entropy, delimiter=',', fmt='%f')
# compute group-wise minority level (beta)
dic_beta = {}
list_values = []
list_counts = []
for j in range(m_g + 2):
if j == 0 or j == 1: # population using demographic dataset
c = I[:, j + 2]
else: # population using genetic genealogy dataset
c = G[:, j + 2]
values, counts = np.unique(c, return_counts=True)
# handle missing value
if j > 1 and values[0] == 0: # may have missing value
values = values[1:]
counts = counts[1:]
list_values.append(values)
list_counts.append(counts)
for k in range(values.size):
dic_beta[(j, values[k])] = np.log2(c.size/values.size/counts[k]+1)
# load customized strategy
custom_strategy_folder = "custom_strategy/"
if scenario == 3.1:
custom_strategy_folder += "k_anonymity/"
custom_strategy_filename = folder_result + custom_strategy_folder + 'i' + str(i) + '.csv'
if os.path.exists(custom_strategy_filename):
custom_strategies = np.genfromtxt(custom_strategy_filename, delimiter=',').astype(bool)
else:
print(custom_strategy_filename + " does not exist!")
custom_strategies = np.ones([n_S, 2 + m_g]).astype(bool) # default
if short_memory_dic:
dic_dist = {}
dic_score = {}
dic_score_solo = {}
dic_attack = {}
dic_surname = {}
total_utility_save = np.empty(n_S)
beta_save = np.empty([n_S, m_g+2])
for j in range(n_S):
print('j: ', j)
s = S[j, :]
if short_local_memory_dic:
dic_attack = {}
dic_surname = {}
# compute beta (minority level) and so on
beta = np.empty(m_g + 2)
for k in range(m_g + 2):
if (k, s[k+2]) in dic_beta:
beta[k] = dic_beta[(k, s[k+2])]
else:
temp_values = list_values[k]
temp_counts = list_counts[k]
beta[k] = np.log2((np.sum(temp_counts)+1)/(temp_values.size+1)+1)
dic_beta[(k, s[k+2])] = beta[k]
beta2alpha = np.power(beta, alpha)
w_beta2alpha = np.multiply(weighted_entropy, beta2alpha)
beta_save[j, :] = beta
utility_boost = np.sum(w_beta2alpha[0:(m_g + 2)]) / np.sum(weighted_entropy[0:(m_g + 2)])
total_utility = base_utility * utility_boost
total_utility_save[j] = total_utility
(opt_payoff, opt_attacker_payoff, opt_attack, opt_success_rate, opt_utility, opt_strategy) = \
sf.optimal_defense(s, I, G, w_beta2alpha, m_g, dic_attack, dic_surname, loss, cost, scenario,
base_utility, theta_p, over_confident, mu, method, tol, dic_dist,
dic_score_solo, dic_score, T_Max, inv_Ne, participation_rate, random_masking_rate,
algorithm, pruning, I_selection, custom_strategies[j, :], utility_boost)
if save_iter:
index = j
else:
index = i * n_S + j
array_optimal_payoff[index] = opt_payoff
array_optimal_attacker_payoff[index] = opt_attacker_payoff
array_privacy[index] = 1 - opt_success_rate * opt_attack
array_utility[index] = opt_utility
array_success_rate[index] = opt_success_rate
sum_opt_strategy += opt_strategy
if log_opt_strategy or save_opt_strategy:
array_attack[index] = opt_attack
list_opt_strategy.append(opt_strategy)
f.write(
'{}-{}: {} {:f} {:d} {}\n'.format(i, j, np.array(list(map(int, opt_strategy))), opt_payoff, opt_attack,
opt_success_rate))
# # compute and save dataset-wise measures
if save_iter:
index = 0
else:
index = i
# compute usefulness
a = np.empty([2 + m_g])
SS = S[:, 2:(2 + m_g + 2)] # essential part of S
array_opt_strategies = np.stack(list_opt_strategy)
if scenario > 0:
array_opt_strategy_i = array_opt_strategies[-n_S:, :]
elif scenario == 0:
array_opt_strategy_i = np.ones([n_S, 2 + m_g]).astype(int)
for j in range(2 + m_g):
S1 = SS[:, j]
# From Age to Birth_year
if j == 0:
S1 = 2020 - S1
if scenario > 0:
array_opt_strategy1 = array_opt_strategy_i[:, j]
S_output = S1[array_opt_strategy1 > 0]
else:
S_output = S1
# compute distance
values, counts = np.unique(S1, return_counts=True)
counts2 = np.copy(counts)
for k in range(values.size):
counts2[k] = np.count_nonzero(S_output == values[k])
if np.sum(counts2) == 0:
S_stat = 1
print('Undefined distance!')
elif counts.size == 1:
S_stat = 0
print('One-point distribution!')
else:
p = counts / np.sum(counts)
q = counts2 / np.sum(counts2)
S_stat = 0.5 * np.sum(np.abs(p-q)) # variational_distance(p, q)
a[j] = 1 - S_stat
array_usefulness[index] = np.dot(a, weighted_entropy) / np.sum(weighted_entropy)
# Compute fairness measures
group_hr_birth_year = list(range(1910, 2000, 10)) # [1910, 1920, 1930, 1940, 1950, 1960, 1970, ..., 1990]
group_hr_state = list(range(11, 51, 10)) # [11, 21, 31, 41]
a_fairness_wrt_payoff = np.empty(2)
a_fairness_wrt_privacy = np.empty(2)
a_fairness_wrt_utility = np.empty(2)
a_fairness_wrt_usefulness = np.empty(2)
for targeted_attribute in range(2):
if targeted_attribute == 0:
group_hr = group_hr_birth_year
else:
group_hr = group_hr_state
n_groups = len(group_hr) + 1
av_optimal_payoff = np.zeros([n_groups])
av_privacy = np.zeros([n_groups])
av_utility = np.zeros([n_groups])
a_usefulness = np.zeros([n_groups, 2 + m_g + 1])
if save_iter:
array_optimal_payoff_i = array_optimal_payoff
array_privacy_i = array_privacy
array_utility_i = array_utility
else:
array_optimal_payoff_i = array_optimal_payoff[(i * n_S):((i + 1) * n_S)]
array_privacy_i = array_privacy[(i * n_S):((i + 1) * n_S)]
array_utility_i = array_utility[(i * n_S):((i + 1) * n_S)]
S_targeted = SS[:, targeted_attribute]
# From Age to Birth_year
if targeted_attribute == 0:
S_targeted = 2020 - S_targeted
memberships = np.copy(S_targeted)
for j in range(n_S): # for each person
index_group = 0
for k in range(n_groups - 1): # for each group (excluding the 1st)
if S_targeted[j] < group_hr[k]:
break
else:
index_group += 1
memberships[j] = index_group
for j in range(n_groups): # for each group
selection = memberships == j
av_optimal_payoff[j] = np.mean(array_optimal_payoff_i[selection])
av_privacy[j] = np.mean(array_privacy_i[selection])
av_utility[j] = np.mean(array_utility_i[selection])
# usefulness compuation
for k in range(2 + m_g): # for each attribute
S1 = SS[:, k]
# From Age to Birth_year
if k == 0:
S1 = 2020 - S1
if scenario > 0:
array_opt_strategy1 = array_opt_strategy_i[:, k]
array_opt_strategy_targeted = array_opt_strategy_i[:, targeted_attribute]
S_output = S1[np.logical_and.reduce((array_opt_strategy1 > 0, selection,
array_opt_strategy_targeted > 0))] # shared data in this group
else: # no protection
S_output = S1[selection]
S1 = S1[selection] # original data in this group
values, counts = np.unique(S1, return_counts=True)
counts2 = np.copy(counts)
for kk in range(values.size):
counts2[kk] = np.count_nonzero(S_output == values[kk])
if np.sum(counts2) == 0:
S_stat = 1
print('Undefined distance! demo_attr: ' + str(targeted_attribute) + ', group: '
+ str(j) + ', attr: ' + str(k) + '.')
elif counts.size == 1:
S_stat = 0
print('One-point distribution!')
else:
p = counts / np.sum(counts)
q = counts2 / np.sum(counts2)
S_stat = 0.5 * np.sum(np.abs(p-q)) # variational_distance(p, q)
a_usefulness[j, k] = 1 - S_stat
a_usefulness[j, -1] = np.dot(a_usefulness[j, 0:(2+m_g)], weighted_entropy) / np.sum(weighted_entropy)
a_fairness_wrt_payoff[targeted_attribute] = 1 - sf.gini(av_optimal_payoff)
a_fairness_wrt_privacy[targeted_attribute] = 1 - sf.gini(av_privacy)
a_fairness_wrt_utility[targeted_attribute] = 1 - sf.gini(av_utility)
a_fairness_wrt_usefulness[targeted_attribute] = 1 - sf.gini(a_usefulness[:, -1])
array_fairness_wrt_payoff[index] = np.mean(a_fairness_wrt_payoff)
array_fairness_wrt_privacy[index] = np.mean(a_fairness_wrt_privacy)
array_fairness_wrt_utility[index] = np.mean(a_fairness_wrt_utility)
array_fairness_wrt_usefulness[index] = np.mean(a_fairness_wrt_usefulness)
if save_beta and scenario == 0: # save total utility and beta
if not os.path.exists(folder_result + 'minority_level'):
os.mkdir(folder_result + 'minority_level')
np.savetxt(folder_result + 'minority_level/beta_i' + str(i) + '.csv', beta_save, delimiter=',', fmt='%f')
np.savetxt(folder_result + 'minority_level/total_utility_i' + str(i) + '.csv', total_utility_save,
delimiter=',', fmt='%f')
if save_opt_strategy:
array_opt_strategy = np.stack(list_opt_strategy)
# save opt_strategy per iteration
if not os.path.exists(folder_result + 'opt_strategy'):
os.mkdir(folder_result + 'opt_strategy')
np.savetxt(folder_result + 'opt_strategy/s' + str(scenario) + '_i' + str(i) + '.csv',
array_opt_strategy[((i - start_iter) * n_S):(((i - start_iter) + 1) * n_S), :],
delimiter=',', fmt='%d')
if not save_iter and i < (start_iter + n_iter - 1): # not the last iteration and not in save-iteration mode
continue
if save_iter:
n_all = n_S
else:
n_all = n_S * n_iter
if log_opt_strategy:
# save optimal strategy to pickle file
n_repeats = int(n_all / (m_g + 2))
column_names = ['Data subject', 'Attribute']
df = pd.DataFrame(columns=column_names)
array_opt_strategy = np.stack(list_opt_strategy)
sum_array_opt_strategy = np.sum(array_opt_strategy, axis=1)
sort_order = (sum_array_opt_strategy, array_attack)
for j in range(m_g+2):
sort_order = (array_opt_strategy[:, j],) + sort_order # have to include a comma for a single-value tuple
order_subject = np.lexsort(sort_order)
print('number of attacked subjects: ' + str(sum(array_attack)))
rank_subject = order_subject.argsort()
for i_subject in range(n_all):
for i_attribute in range(m_g + 2):
if not list_opt_strategy[i_subject][i_attribute]:
for k in range(n_repeats):
id_attribute = n_repeats * (m_g + 2) - (i_attribute * n_repeats + k)
new_row = {column_names[0]: rank_subject[i_subject] + 0.5, column_names[1]: id_attribute}
df = df.append(new_row, ignore_index=True)
df.to_pickle(folder_result + 'optimal_strategy_' + str(scenario) + '.pkl')
dataset = pd.DataFrame({'privacy': array_privacy,
'utility': array_utility,
'defender_optimal': array_optimal_payoff,
'attacker_optimal': array_optimal_attacker_payoff,
'success_rate': array_success_rate})
dataset2 = pd.DataFrame({'usefulness': array_usefulness,
'fairness_wrt_payoff': array_fairness_wrt_payoff,
'fairness_wrt_privacy': array_fairness_wrt_privacy,
'fairness_wrt_utility': array_fairness_wrt_utility,
'fairness_wrt_usefulness': array_fairness_wrt_usefulness})
dataset.to_pickle(pickle_filename)
dataset2.to_pickle(pickle_filename2)
f.write('Average strategy: ' + str(sum_opt_strategy/n_all) + '\n')
f.write('Average sharing rate: ' + str(np.mean(sum_opt_strategy / n_all)) + '\n')
f.write('Data subjects\' average payoff: ' + str(np.mean(array_optimal_payoff)) + '\n')
f.write('Data subjects\' average privacy: ' + str(np.mean(array_privacy)) + '\n')
f.write('Data subjects\' average utility: ' + str(np.mean(array_utility)) + '\n')
f.write('Data subjects\' average success rate: ' + str(np.mean(array_success_rate)) + '\n')
f.write('Data usefulness: ' + str(np.mean(array_usefulness)) + '\n')
f.write('Fairness wrt payoff: ' + str(np.mean(array_fairness_wrt_payoff)) + '\n')
f.write('Fairness wrt privacy: ' + str(np.mean(array_fairness_wrt_privacy)) + '\n')
f.write('Fairness wrt utility: ' + str(np.mean(array_fairness_wrt_utility)) + '\n')
f.write('Fairness wrt usefulness: ' + str(np.mean(array_fairness_wrt_usefulness)) + '\n')
elapsed2 = (time.time() - start2)
f.write("Time used: " + str(elapsed1) + " seconds (loading) + " + str(elapsed2) + " seconds (computing).\n")
f.write('\n')
f.write('Configurations:\n')
f.write('n_I: ' + str(n_I) + '\n')
f.write('n_S: ' + str(n_S) + '\n')
f.write('n_G: ' + str(n_G) + '\n')
f.write('n_iter: ' + str(n_iter) + '\n')
f.write('theta_p: ' + str(theta_p) + '\n')
f.write('tol: ' + str(tol) + '\n')
f.write('cost: ' + str(cost) + '\n')
f.write('loss: ' + str(loss) + '\n')
f.write('missing_level: ' + str(missing_level) + '\n')
f.write('random_masking_rate: ' + str(random_masking_rate) + '\n')
f.write('base_utility: ' + str(base_utility) + '\n')
f.write('alpha: ' + str(alpha) + '\n')
f.write('log_opt_strategy: ' + str(log_opt_strategy) + '\n')
f.write('save_dic: ' + str(save_dic) + '\n')
f.write('load_dic: ' + str(load_dic) + '\n')
f.write('short_memory_dic: ' + str(short_memory_dic) + '\n')
f.write('short_local_memory_dic: ' + str(short_local_memory_dic) + '\n')
f.write('save_iter: ' + str(save_iter) + '\n')
f.write('folder_result: ' + folder_result + '\n')
f.close()
if save_dic:
# save dictionaries
dic_names = ['dist', 'score', 'score_solo', 'attack', 'surname']
dics = [dic_dist, dic_score, dic_score_solo, dic_attack, dic_surname]
for i in range(5):
f1 = open(folder_result + 'dic_s' + str(scenario) + '_' + dic_names[i] + '.pkl', 'wb')
pickle.dump(dics[i], f1, protocol=pickle.HIGHEST_PROTOCOL)
f1.close()