Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

finetuner面向任务的微调,以便在神经搜索中更好地嵌入 #63

Open
ziwang-com opened this issue May 28, 2023 · 0 comments

Comments

@ziwang-com
Copy link
Owner

https://github.com/jina-ai/finetuner
Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications.

面向任务的微调,以便在神经搜索中更好地嵌入

PyPI Codecov branch PyPI - Downloads from official pypistats

微调是提高神经搜索任务性能的有效方法。但是,设置和执行微调可能非常耗时且占用大量资源。

Jina AI 的微调器通过简化工作流程并处理云中的所有复杂性和基础设施,使微调变得更容易、更快捷。借助 Finetuner,您可以轻松增强预训练模型的性能,使其无需大量标签或昂贵的硬件即可投入生产。

🎏 更好的嵌入:为语义搜索、视觉相似性搜索、跨模式文本<>图像搜索、推荐系统、聚类、重复检测、异常检测或其他用途创建高质量的嵌入。

⏰ 低预算,高期望:显著提高模型性能,充分利用短至几百个训练样本,并在短短一小时内完成微调。

📈 性能承诺:增强预训练模型的性能,以便它们在特定领域的应用程序上提供最先进的性能。

🔱 简单而强大:轻松访问 40+ 主流损失函数、10+ 优化器、图层修剪、权重冻结、降维、硬负挖掘、跨模态模型和分布式训练。

☁ 全云:使用我们的 GPU 基础设施进行训练,在 Jina AI Cloud 上管理运行、实验和工件,无需担心资源可用性、复杂的集成或基础设施成本。

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant