-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathnet.py
87 lines (81 loc) · 3.6 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import torch as th
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
import matplotlib.pyplot as plt
import dgl
import networkx as nx
import dgl.function as fn
from dgl.data import MiniGCDataset
import dgl.function as fn
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from dgl.nn.pytorch import SumPooling
import numpy as np
from dgl.data.utils import save_graphs, get_download_dir, load_graphs
# from dgl.subgraph import DGLSubGraph
from torch.utils.data import Dataset, DataLoader
from dset import dgraph, collate
from dgl.nn.pytorch.conv import GraphConv
from torch.nn import Linear
from dgl.nn.pytorch.conv import GraphConv
from torch.nn import Linear
from layers import three_gcn, cross_sim, att_layer, NTN
class sub_GMN(torch.nn.Module):
def __init__(self, GCN_in_size, GCN_out_size, q_size, da_size, NTN_k, mask=False):
super(sub_GMN, self).__init__()
self.GCN_in_size = GCN_in_size
self.GCN_out_size = GCN_out_size # D
self.q_size = q_size
self.da_size = da_size
self.NTN_k = NTN_k
self.mask = mask
# layers
self.GCN = three_gcn(in_size=self.GCN_in_size, out_size=self.GCN_out_size)
self.NTN1 = NTN(q_size=self.q_size, da_size=self.da_size, D=self.GCN_out_size, k=self.NTN_k)
self.NTN2 = NTN(q_size=self.q_size, da_size=self.da_size, D=self.GCN_out_size, k=self.NTN_k)
self.NTN3 = NTN(q_size=self.q_size, da_size=self.da_size, D=self.GCN_out_size, k=self.NTN_k)
self.Con1 = nn.Conv2d(self.NTN_k + 1, 1, [1, 1])
self.Con2 = nn.Conv2d(self.NTN_k + 1, 1, [1, 1])
self.Con3 = nn.Conv2d(self.NTN_k + 1, 1, [1, 1])
self.con_end = nn.Conv2d(self.NTN_k * 3 + 6, 1, [1, 1])
def forward(self, bg_da, bg_q, b_same): # b_same bx5x8
b_same_adddim = torch.unsqueeze(b_same, 1) # b_same bx1x5x8
da1, da2, da3 = self.GCN(bg_da, self.da_size)
q1, q2, q3 = self.GCN(bg_q, self.q_size)
# 1
att1 = att_layer(batch_q_em=q1, batch_da_em=da1) # att bx1x5x18
N1_16 = self.NTN1(batch_q_em=q1, batch_da_em=da1) # N1_16 bxkx5x18
N1_16 = N1_16 * att1 # N1_16 bxkx5x18
he_1 = torch.cat([b_same_adddim, N1_16], dim=1) # he_1 bx(k+1)x5x18
end1 = self.Con1(he_1) # end1 bx1x5x18
end1 = torch.softmax(end1, dim=3)
# 2
att2 = att_layer(batch_q_em=q2, batch_da_em=da2) # att bx1x5x18
N2_16 = self.NTN2(batch_q_em=q2, batch_da_em=da2) # N_16 bxkx5x18
N2_16 = N2_16 * att2 # N_16 bxkx5x18
he_2 = torch.cat([b_same_adddim, N2_16], dim=1) # he bx(k+1)x5x18
end2 = self.Con2(he_2) # end bx1x5x18
end2 = torch.softmax(end2, dim=3)
# 3
att3 = att_layer(batch_q_em=q3, batch_da_em=da3) # att bx1x5x18
N3_16 = self.NTN3(batch_q_em=q3, batch_da_em=da3) # N_16 bxkx5x18
N3_16 = N3_16 * att3 # N_16 bxkx5x18
he_3 = torch.cat([b_same_adddim, N3_16], dim=1) # he bx(k+1)x5x18
end3 = self.Con3(he_3) # end bx1x5x18
end3 = torch.softmax(end3, dim=3)
# end
end = torch.cat([end1, end2, end3, he_1, he_2, he_3], dim=1) # end bx(3k+6)x5x18
end = self.con_end(end) # end bx1x5x18
end = end.reshape(-1, self.q_size, self.da_size) # end bx5x18
if self.mask:
end = torch.softmax(end, dim=2)
end = end * b_same # end bx5x18
# end = torch.softmax(end, dim=2)
else:
end = torch.softmax(end, dim=2)
return end