-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathzzh.py
90 lines (78 loc) · 2.71 KB
/
zzh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import torch
import torch.optim as optim
from torch import nn
from torch.autograd import Variable
from torchvision import transforms
from torch.utils.data import Dataset, DataLoader
import numpy as np
import os
class Regularization(torch.nn.Module):
def __init__(self,model,weight_decay,p=2):
'''
:param model 模型
:param weight_decay:正则化参数
:param p: 范数计算中的幂指数值,默认求2范数,
当p=0为L2正则化,p=1为L1正则化
'''
super(Regularization, self).__init__()
if weight_decay <= 0:
print("param weight_decay can not <=0")
exit(0)
self.model=model
self.weight_decay=weight_decay
self.p=p
self.weight_list=self.get_weight(model)
self.weight_info(self.weight_list)
def to(self,device):
'''
指定运行模式
:param device: cude or cpu
:return:
'''
self.device=device
super().to(device)
return self
def forward(self, model):
self.weight_list=self.get_weight(model)#获得最新的权重
reg_loss = self.regularization_loss(self.weight_list, self.weight_decay, p=self.p)
return reg_loss
def get_weight(self,model):
'''
获得模型的权重列表
:param model:
:return:
'''
weight_list = []
for name, param in model.named_parameters():
if 'weight' in name:
weight = (name, param)
weight_list.append(weight)
return weight_list
def regularization_loss(self,weight_list, weight_decay, p=0):
'''
计算张量范数
:param weight_list:
:param p: 范数计算中的幂指数值,默认求2范数 当p=0为L2正则化,p=1为L1正则化
:param weight_decay:
:return:
'''
# weight_decay=Variable(torch.FloatTensor([weight_decay]).to(self.device),requires_grad=True)
# reg_loss=Variable(torch.FloatTensor([0.]).to(self.device),requires_grad=True)
# weight_decay=torch.FloatTensor([weight_decay]).to(self.device)
# reg_loss=torch.FloatTensor([0.]).to(self.device)
reg_loss=0
for name, w in weight_list:
l2_reg = torch.norm(w, p=p)
reg_loss = reg_loss + l2_reg
reg_loss=weight_decay*reg_loss
return reg_loss
def weight_info(self,weight_list):
'''
打印权重列表信息
:param weight_list:
:return:
'''
print("---------------regularization weight---------------")
for name ,w in weight_list:
print(name)
print("---------------------------------------------------")