-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel_1.py
146 lines (117 loc) · 5.18 KB
/
model_1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import pandas as pd
import numpy as np
from typing import List, Tuple
from model_base import Model_Base, UpdateModel
from map2int import TO_MAP, MAP
from data_iter import HbaseDataIter
from config import *
class Model_1(Model_Base):
def __init__(self, model, data_iter, handle,
prepare_data, train_data_cate, *,
base_dir_path=None,
save_iter=500, print_iter=100,
lr_iter=1000, lr=0.001,
restart_sum=1000, break_sum=8):
super(Model_1, self).__init__(model, data_iter, handle, prepare_data,
train_data_cate,
base_dir_path=base_dir_path,
save_iter=save_iter,
print_iter=print_iter,
lr_iter=lr_iter,
lr=lr,
restart_sum=restart_sum,
break_sum=break_sum)
def parse_his(x):
x = eval(x)
if len(x) == 0:
return []
return [abs(i) if i < AD_BOUND else i - 90000 for i in x]
def handle(data: pd.DataFrame) -> Tuple[List, List]:
# data = data.drop(columns=["school_id", "county_id"], )
to_int = ["mobile_os", "province_id",
"grade_id", "city_id",
"ad_id", "user_id", "log_hourtime",
]
for i in to_int:
data[i] = data[i].astype(int)
for i in TO_MAP:
data[i] = data[i].map(lambda x: MAP[i].get(x, 0))
data["ad_id"] = data["ad_id"].map(lambda x: abs(x) if x < AD_BOUND else x - 90000)
data["user_id"] = data["user_id"].map(lambda x: abs(x) % 6 if x < USER_BOUND else x - USER_BOUND)
data["rclick_ad"] = data["rclick_ad"].map(lambda x: parse_his(x))
to_select = ["user_id", "ad_id", "mobile_os",
"province_id", "city_id", "grade_id",
"math_ability", "english_ability", "chinese_ability",
"purchase_power", "activity_degree", "app_freshness",
"log_hourtime",
"rclick_ad"]
feature, target = [], []
for row in data.itertuples(index=False):
tmp = []
for i in to_select:
tmp.append(getattr(row, i))
if getattr(row, "is_click") == "0":
target.append([1, 0])
else:
target.append([0, 1])
feature.append(tmp)
return feature, target
def prepare_data(feature: List, target: List, choose_len: int = 0) -> Tuple:
user_id = np.array([fea[0] for fea in feature])
ad_id = np.array([fea[1] for fea in feature])
mobile = np.array([fea[2] for fea in feature])
province = np.array([fea[3] for fea in feature])
city = np.array([fea[4] for fea in feature])
grade = np.array([fea[5] for fea in feature])
math = np.array([fea[6] for fea in feature])
english = np.array([fea[7] for fea in feature])
chinese = np.array([fea[8] for fea in feature])
purchase = np.array([fea[9] for fea in feature])
activity = np.array([fea[10] for fea in feature])
freshness = np.array([fea[11] for fea in feature])
hour = np.array([fea[12] for fea in feature])
seqs_ad = [fea[13] for fea in feature]
lengths_xx = [len(i) for i in seqs_ad]
if choose_len != 0:
new_seqs_ad = []
new_lengths_xx = []
for l_xx, fea in zip(lengths_xx, seqs_ad):
if l_xx > choose_len:
new_seqs_ad.append(fea[l_xx - choose_len:])
new_lengths_xx.append(l_xx)
else:
new_seqs_ad.append(fea)
new_lengths_xx.append(l_xx)
lengths_xx = new_lengths_xx
seqs_ad = new_seqs_ad
max_len = np.max(lengths_xx)
cnt_samples = len(seqs_ad)
ad_his = np.zeros(shape=(cnt_samples, max_len), ).astype("int64")
ad_mask = np.zeros(shape=(cnt_samples, max_len)).astype("float32")
for idx, x in enumerate(seqs_ad):
ad_mask[idx, :lengths_xx[idx]] = 1.0
ad_his[idx, :lengths_xx[idx]] = x
return user_id, ad_id, mobile, province, city, grade, math, english, \
chinese, purchase, activity, freshness, hour, \
ad_his, ad_mask, np.array(lengths_xx), np.array(target)
if __name__ == '__main__':
from model_base import parse_argv
import sys
argv = sys.argv.copy()
if len(argv) == 1:
argv = ["aa.py", "", ""]
filter_str, days = parse_argv(argv)
inner_model = UpdateModel()
data_iter = HbaseDataIter(HBASE_HOST, HBASE_TABLE, filter_str, days,
HBASE_FIELD)
train_data_cate = ["uid_ph", "mid_ph", "mobile_ph", "province_ph",
"city_ph", "grade_ph", "math_ph", "english_ph",
"chinese_ph", "purchase_ph", "activity_ph",
"freshness_ph", "hour_ph", "mid_his_ph", "mask_ph",
"seq_len_ph", "target_ph", ]
model = Model_1(inner_model, data_iter,
handle, prepare_data,
train_data_cate,
)
model.run({"batch_size": 128}, ["ubuntu@10.19.90.95:/data/midas-model",
"ubuntu@10.19.160.33:/data/midas-model"])