-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathtest-calib.py
executable file
·87 lines (63 loc) · 1.85 KB
/
test-calib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os, sys, re
import numpy as np
import cv2
if __name__ == '__main__':
images = []
files = sorted(os.listdir("."))
for filename in files:
m = re.match(r"frame-(\d{3})-raw-(?P<type>\d).pgm", filename)
if m is None:
continue
code = int(m.group("type"))
if code != 3:
continue
img = cv2.imread(filename, flags=cv2.IMREAD_ANYDEPTH)
if img.dtype == np.uint16:
img = np.float64(img)/65535
if img.dtype == np.uint8:
img = np.float64(img)/255
images.append(img)
"""
Find out spots which are always the same...
These pixels are really dead.
"""
img_avg = np.zeros_like(images[0])
for i, img in enumerate(images):
img_avg += img
img_avg /= len(images)
cv2.imwrite("calib-avg.png", img_avg/img_avg.max()*255)
img_std = np.zeros_like(images[0])
for i, img in enumerate(images):
img_std += (img - img_avg)**2
img_std = (img_std / len(images)) ** 0.5
cv2.imwrite("calib-std.png", img_std/img_std.max()*255)
print("Std. min: %.9f" % img_std.min())
print("Std. max: %.9f" % img_std.max())
print("Std. avg: %.9f" % img_std.mean())
std_threshold = 0.0005
img_dead = np.zeros_like(img_avg)
img_dead[img_std < std_threshold] = 1
cv2.imwrite("calib-bpc-dead.png", img_dead*255)
raise SystemExit()
"""
OK, now what do we do with the rest... the std. image is really
showing that we need to do something.
"""
grid = np.zeros_like(img_avg)
for i, img in enumerate(images):
a = np.abs(img-cv2.blur(img, (9,9)))
cv2.imwrite("grid-%03d.png" % i, a/a.max()*255)
# don't use right border
#a[:,-3:] = 0
grid += a
thresh = 0.25
grid[grid>thresh] = 1
grid[grid<=thresh] = 0
cv2.imwrite("1grid.png", grid*255)
if 1:
for i, img in enumerate(images):
b = cv2.blur(img, (9,9))
a = img * (1.0 - grid) + b * (grid)
cv2.imwrite("frame-%03d-corrected.png" % i, a/a.max()*255)