Skip to content

🩺 Chest X-Ray Disease Detection using CNN | Detect diseases from X-ray images with AI πŸ“ŠπŸš€ | Features: Preprocessing, CNN architecture, accuracy metrics πŸ’‘ | Get Started: Clone & explore! πŸ–₯️✨

License

Notifications You must be signed in to change notification settings

Adi3042/Chest-X-Ray-Disease_Detection_using_CNN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

9 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

🌟 Chest X-Ray Disease Detection using CNN 🩺

This project focuses on utilizing Convolutional Neural Networks (CNN) for the detection of Pneumonia from chest X-ray images. The goal is to assist in faster and more accurate diagnoses, contributing to better medical decision-making.

Chest X-Ray

πŸš€ Features

✨ Data Preprocessing: Efficient cleaning and preparation of X-ray images.
πŸ“Š Model Training: CNN-based model to classify chest X-rays.
πŸ“ˆ Evaluation: Performance metrics like accuracy, loss, and confusion matrix.
πŸ“Έ Visualization: Easy visualization of X-rays and model predictions.

πŸ› οΈ Installation

  1. Clone the repository:
    git clone https://github.com/Adi3042/Chest-X-Ray-Disease_Detection_using_CNN.git
  2. Navigate to the project directory:
    cd Chest-X-Ray-Disease_Detection_using_CNN
  3. Install dependencies:
    pip install -r requirements.txt
  4. Run app.py:
    python app.py
  5. Visit at Given link:
    http://127.0.0.1:5000/

πŸ§‘β€πŸ’» Usage

  1. Download the dataset from Kaggle.
  2. Prepare the dataset:
    • Extract the dataset into the chest_xray folder.
    • Merge all images from train, test, and val folders:
      • Move all NORMAL images into a single NORMAL/ folder.
      • Move all PNEUMONIA images into a single PNEUMONIA/ folder.
    • Ensure your structure looks like this:
       Chest-X-Ray-Disease_Detection_using_CNN/
       β”œβ”€β”€ data/
       β”‚   β”œβ”€β”€ NORMAL/
       β”‚   β”œβ”€β”€ PNEUMONIA/
       β”œβ”€β”€ saved_models/
       β”‚   β”œβ”€β”€ Chest_Disease_Classifier_Model.h5
       β”‚   β”œβ”€β”€ Chest_Disease_Classifier_Model.keras
       β”‚   β”œβ”€β”€ Chest_Disease_Classifier_Model.tflite
       β”œβ”€β”€ src/
       β”‚   β”œβ”€β”€ exception.py
       β”‚   β”œβ”€β”€ logger.py
       β”‚   β”œβ”€β”€ utils.py
       β”œβ”€β”€ static/
       β”‚   β”œβ”€β”€ javascript/
       β”‚   β”‚   β”œβ”€β”€ index.js
       β”‚   β”‚   β”œβ”€β”€ contactUs.js
       β”‚   β”œβ”€β”€ css/
       β”‚   β”‚   β”œβ”€β”€ index.css
       β”‚   β”‚   β”œβ”€β”€ contactUs.css
       β”‚   β”œβ”€β”€ assets/
       β”‚   β”‚   β”œβ”€β”€ chest.png
       β”‚   β”‚   β”œβ”€β”€ favicon.png
       β”‚   β”‚   β”œβ”€β”€ logo1.png
       β”œβ”€β”€ templates/
       β”‚   β”œβ”€β”€ index.html
       β”‚   β”œβ”€β”€ contactUs.html
       β”œβ”€β”€ app.py
       β”œβ”€β”€ Chest_X_Ray.ipynb
       β”œβ”€β”€ requirements.txt
       β”œβ”€β”€ LICENSE
       β”œβ”€β”€ .gitignore
      

πŸ“œ License

This project is licensed under the MIT License. See the LICENSE file for more details.

About

🩺 Chest X-Ray Disease Detection using CNN | Detect diseases from X-ray images with AI πŸ“ŠπŸš€ | Features: Preprocessing, CNN architecture, accuracy metrics πŸ’‘ | Get Started: Clone & explore! πŸ–₯️✨

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages