This project focuses on utilizing Convolutional Neural Networks (CNN) for the detection of Pneumonia from chest X-ray images. The goal is to assist in faster and more accurate diagnoses, contributing to better medical decision-making.
β¨ Data Preprocessing: Efficient cleaning and preparation of X-ray images.
π Model Training: CNN-based model to classify chest X-rays.
π Evaluation: Performance metrics like accuracy, loss, and confusion matrix.
πΈ Visualization: Easy visualization of X-rays and model predictions.
- Clone the repository:
git clone https://github.com/Adi3042/Chest-X-Ray-Disease_Detection_using_CNN.git
- Navigate to the project directory:
cd Chest-X-Ray-Disease_Detection_using_CNN
- Install dependencies:
pip install -r requirements.txt
- Run app.py:
python app.py
- Visit at Given link:
http://127.0.0.1:5000/
- Download the dataset from Kaggle.
- Prepare the dataset:
- Extract the dataset into the
chest_xray
folder. - Merge all images from
train
,test
, andval
folders:- Move all NORMAL images into a single
NORMAL/
folder. - Move all PNEUMONIA images into a single
PNEUMONIA/
folder.
- Move all NORMAL images into a single
- Ensure your structure looks like this:
Chest-X-Ray-Disease_Detection_using_CNN/ βββ data/ β βββ NORMAL/ β βββ PNEUMONIA/ βββ saved_models/ β βββ Chest_Disease_Classifier_Model.h5 β βββ Chest_Disease_Classifier_Model.keras β βββ Chest_Disease_Classifier_Model.tflite βββ src/ β βββ exception.py β βββ logger.py β βββ utils.py βββ static/ β βββ javascript/ β β βββ index.js β β βββ contactUs.js β βββ css/ β β βββ index.css β β βββ contactUs.css β βββ assets/ β β βββ chest.png β β βββ favicon.png β β βββ logo1.png βββ templates/ β βββ index.html β βββ contactUs.html βββ app.py βββ Chest_X_Ray.ipynb βββ requirements.txt βββ LICENSE βββ .gitignore
- Extract the dataset into the
This project is licensed under the MIT License. See the LICENSE file for more details.