Skip to content

AkiraHero/perception_imitator

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Perception Imitation: Towards Data-free Simulator for Autonomous Vehicles

Getting Start

conda create --name imitator python=3.9
conda activate imitator
pip install -r requirements.txt

Data Preparation

  1. Download the source data of nuScenes and CARLA, and extract them into ~/Datasets/.

  2. Download the target models' results (ImitatorData)and put them in ~/Perception_Imitation/data/. The relationship of different target model trained with different dataset and its results are illustrated in the table:

    Dataset Results
    nuScenes nuscenes_ %TargetModel _match_gt.json
    Kitti kitti_%TargetModel _match_gt.pkl
    CARLA carla_ %TargetModel _match_gt.pkl

    where TargetModel = {‘pp’, ‘cp’, ‘pvrcnn’}.

  3. The data is structured as:

    |— Datasets 
    |  |— carla 
    |  |  |— carla_new 
    |  |  |— Maps 
    |  |— nuScenes 
    |  |  |— maps 
    |  |  |— v1.0-mini 
    |  |  |— v1.0-trainval 
    |  |  |— ... 
    |— Perception_Imitation 
    |  |— data 
    |  |  |— nuscenes_pp_match_gt.json 
    |  |  |— kitti_cp_match_gt.pkl 
    |  |  |— ... 
    |  |— dataset 
    |  |  |— ... 
    |  |— ... 
    

Training

Baseline

  1. Running code :

    python main/train.py --cfg_dir utils/config/samples/sample_carla 
  2. Change datasets

    Replace "sample_carla" with "sample_nuscenes" or "sample_kitti".

  3. Change target model

    Modify different value of the key "target_model" in file sample_carla/dataset/scene_occ_xxx.yaml .

Our imitator

  1. Running code:

    python main/train.py --cfg_dir utils/config/samples/sample_carla_improve 
    
  2. The rest are the same as the baseline.

Evaluation

Gaussian and Multimodal

Running code:

python main/test_baseline_gaussian.py --cfg_dir utils/config/samples/sample_carla_improve/ 

Baseline or Imitator

Running code:

python main/test_baseline_evaluate.py --cfg_dir utils/config/samples/sample_carla_improve/ 

Visualization

Running code:

python main/plot_qualitative_results.py 

and the images will be saved in the format of eps in ~/ADModel_Pro/ output/pic/.

About

This is the implementation for our paper.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages