conda create --name imitator python=3.9
conda activate imitator
pip install -r requirements.txt
-
Download the source data of nuScenes and CARLA, and extract them into
~/Datasets/
. -
Download the target models' results (ImitatorData)and put them in
~/Perception_Imitation/data/
. The relationship of different target model trained with different dataset and its results are illustrated in the table:Dataset Results nuScenes nuscenes_ %TargetModel _match_gt.json Kitti kitti_%TargetModel _match_gt.pkl CARLA carla_ %TargetModel _match_gt.pkl where TargetModel = {‘pp’, ‘cp’, ‘pvrcnn’}.
-
The data is structured as:
|— Datasets | |— carla | | |— carla_new | | |— Maps | |— nuScenes | | |— maps | | |— v1.0-mini | | |— v1.0-trainval | | |— ... |— Perception_Imitation | |— data | | |— nuscenes_pp_match_gt.json | | |— kitti_cp_match_gt.pkl | | |— ... | |— dataset | | |— ... | |— ...
-
Running code :
python main/train.py --cfg_dir utils/config/samples/sample_carla
-
Change datasets
Replace "sample_carla" with "sample_nuscenes" or "sample_kitti".
-
Change target model
Modify different value of the key "target_model" in file
sample_carla/dataset/scene_occ_xxx.yaml
.
-
Running code:
python main/train.py --cfg_dir utils/config/samples/sample_carla_improve
-
The rest are the same as the baseline.
Running code:
python main/test_baseline_gaussian.py --cfg_dir utils/config/samples/sample_carla_improve/
Running code:
python main/test_baseline_evaluate.py --cfg_dir utils/config/samples/sample_carla_improve/
Running code:
python main/plot_qualitative_results.py
and the images will be saved in the format of eps in ~/ADModel_Pro/ output/pic/
.