Skip to content

AlbertDu/Machine-Learning-Toolbox

 
 

Repository files navigation

Machine-Learning-Toolbox

1.DataToolBox

(1) Metric:

acc=get_acc(real_label,predict_label)

auc=get_auc(real_label, scores)

[tpr,tnr,macc]=get_macc(real_label, predict_label)

(2) Re-sampling:

[data_much,data_less,much_label,less_label]=divide_data(data, label)

Random Under-Sampling: [train_data_temp,train_label_temp]=RUS(data_much, data_less, much_label, less_label)

Random Over-Sampling: [train_data_temp,train_label_temp]=ROS(data_much, data_less, much_label, less_label)

2.Ensemble

(1) Stacking

stacking(clfs,X_train,y,X_test,nfolds=5,stage=1,random_seed=2017,shuffle=True,clfs_name=None,final_clf=None)

3. MatMHKS

A matrix based linear classifier

clf=MatMHKS(penalty='l2', C=1.0, matrix_type=None,class_weight=None, max_iter=100,u0=0.5,b0=10**(-6),eta=0.99,min_step=0.0001,multi_class='ovr', verbose=0)

clf.fit(X,y)

clf.predict(X)

clf.predict_proba(X)

4.generator

generator for keras/tensorflow (enhanced,imbalanced data)

5.metrics

tpr tnr for keras/tensorflow

6.loss

(1) focal loss

(2) center loss

(3) triplet loss

(4) island loss

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 70.2%
  • Python 29.8%