This is a simple tool to augment images and videos for computer vision tasks.
Available augmentations are: no_augmentation, flip, zoom, rotate, shear, grayscale, hue, saturation, brightness, exposure, blur, noise, cutout, negative.
You can install the package using pip:
pip install CVAugmentor
For a detailed usage guide, please refer to the documentation.
# Importing the libraries
from CVAugmentor import Augmentations as aug
from CVAugmentor import Pipeline
# Define the augmentations
augmentations = {
"zoom": aug.zoom(),
"flip": aug.flip(),
}
# Create a Pipeline object
p = Pipeline()
# Augment the image
p.augment(input_path="path/to/input_image", output_path="path/to/output_image", target="image", process_type="single", mode="singular", augmentations=augmentations, aug_verbose=True)
# Importing the libraries
from CVAugmentor import Augmentations as aug
from CVAugmentor import Pipeline
# Define the augmentations
augmentations = {
"zoom": aug.zoom(),
"flip": aug.flip(),
}
# Create a Pipeline object
p = Pipeline()
# Augment the video
p.augment(input_path="path/to/input_video", output_path="path/to/output_video", target="video", process_type="single", mode="singular", augmentations=augmentations, aug_verbose=True)
# Importing the libraries
from CVAugmentor import Augmentations as aug
from CVAugmentor import Pipeline
# Define the augmentations
augmentations = {
"zoom": aug.zoom(),
"flip": aug.flip(),
}
# Create a Pipeline object
p = Pipeline()
# Augment the images
p.augment(input_path="path/to/input_images", output_path="path/to/output_images", target="image", process_type="batch", mode="singular", augmentations=augmentations, verbose=True, warn_verbose=True)
# Importing the libraries
from CVAugmentor import Augmentations as aug
from CVAugmentor import Pipeline
# Define the augmentations
augmentations = {
"zoom": aug.zoom(),
"flip": aug.flip(),
}
# Create a Pipeline object
p = Pipeline()
# Augment the videos
p.augment(input_path="path/to/input_videos", output_path="path/to/output_videos", target="video", process_type="batch", mode="singular", augmentations=augmentations, verbose=True, warn_verbose=True)
This work is under an MIT License.