-
Notifications
You must be signed in to change notification settings - Fork 130
components oss_distillation_generate_data_batch_preprocess
github-actions[bot] edited this page Nov 13, 2024
·
1 revision
Component to prepare data to invoke teacher model enpoint in batch
Version: 0.0.1
View in Studio: https://ml.azure.com/registries/azureml/components/oss_distillation_generate_data_batch_preprocess/version/0.0.1
Inputs
Name | Description | Type | Default | Optional | Enum |
---|---|---|---|---|---|
train_file_path | Path to the registered training data asset. The supported data formats are jsonl , json , csv , tsv and parquet . |
uri_file | |||
validation_file_path | Path to the registered validation data asset. The supported data formats are jsonl , json , csv , tsv and parquet . |
uri_file | True | ||
teacher_model_endpoint_name | Teacher model endpoint name | string | True | ||
teacher_model_endpoint_url | Teacher model endpoint url | string | True | ||
teacher_model_endpoint_key | Teacher model endpoint key | string | True | ||
teacher_model_max_new_tokens | Teacher model max_new_tokens inference parameter | integer | 128 | ||
teacher_model_temperature | Teacher model temperature inference parameter | number | 0.2 | ||
teacher_model_top_p | Teacher model top_p inference parameter | number | 0.1 | ||
teacher_model_frequency_penalty | Teacher model frequency penalty inference parameter | number | 0.0 | ||
teacher_model_presence_penalty | Teacher model presence penalty inference parameter | number | 0.0 | ||
teacher_model_stop | Teacher model stop inference parameter | string | True | ||
enable_chain_of_thought | Enable Chain of thought for data generation | string | false | True | |
enable_chain_of_density | Enable Chain of density for text summarization | string | false | True | |
max_len_summary | Maximum Length Summary for text summarization | integer | 80 | True | |
data_generation_task_type | Data generation task type. Supported values are: 1. NLI: Generate Natural Language Inference data 2. CONVERSATION: Generate conversational data (multi/single turn) 3. NLU_QA: Generate Natural Language Understanding data for Question Answering data 4. MATH: Generate Math data for numerical responses 5. SUMMARIZATION: Generate Key Summary for an Article | string | ['NLI', 'CONVERSATION', 'NLU_QA', 'MATH', 'SUMMARIZATION'] |
Output of validation component.
Name | Description | Type | Default | Optional | Enum |
---|---|---|---|---|---|
validation_info | Validation status. | uri_file | True |
Name | Description | Type |
---|---|---|
generated_train_payload_path | directory containing the payload to be sent to the model. | mltable |
generated_validation_payload_path | directory containing the payload to be sent to the model. | mltable |
hash_train_data | jsonl file containing the hash for each payload. | uri_file |
hash_validation_data | jsonl file containing the hash for each payload. | uri_file |
batch_config_connection | Config file path that contains deployment configurations | uri_file |
azureml://registries/azureml/environments/acft-hf-nlp-gpu/versions/76