Skip to content

components rai_vision_insights

github-actions[bot] edited this page Oct 21, 2023 · 21 revisions

RAI Vision Insights

rai_vision_insights

Overview

Version: 0.0.10

Tags

Preview

View in Studio: https://ml.azure.com/registries/azureml/components/rai_vision_insights/version/0.0.10

Inputs

Name Description Type Default Optional Enum
task_type The type of task to perform string ['image_classification', 'multilabel_image_classification', 'object_detection']
model_input The model name to be used for computing insights mlflow_model False
model_info The model name to be used for computing insights string False
test_dataset The test dataset to be used for computing insights mltable
target_column_name The target column name string
maximum_rows_for_test_dataset The maximum number of rows to use from the test dataset integer 5000
classes The list of class names for the target column string []
categorical_metadata_features The list of categorical metadata feature names string []
dropped_metadata_features The list of dropped metadata feature names string []
precompute_explanation Whether to precompute explanations boolean True
enable_error_analysis Whether to enable computation of error analysis boolean True
use_model_dependency Whether to install the MLFlow model's dependencies in the RAI environment boolean False
use_conda Whether to use conda to install dependencies boolean False
model_type The type of MLFlow model to deserialize string ['pyfunc', 'fastai', 'pytorch']

guided_gradcam doesn't work with transformer vision models and shap isn't supported for automl images models for more details on XAI parameters, refer to following link https://learn.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models?tabs=cligenerate-explanations-for-predictions

Name Description Type Default Optional Enum
xai_algorithm The explanation algorithm to use for AutoML vision models, always set to shap for others string guided_backprop True ['guided_backprop', 'guided_gradcam', 'integrated_gradients', 'xrai', 'shap']
n_steps The number of steps for the integrated gradients and XRAI algorithms integer True
xrai_fast Whether to use the faster version of the XRAI algorithm boolean True
approximation_method The approximation method to use for the integrated gradients algorithm string True ['gausslegendre', 'riemann_middle']
confidence_score_threshold_multilabel The confidence score threshold for multilabel classification explanations, above which the labels are selected for generating explanations number True
image_width_in_inches The width to resize the image to in inches number True
max_evals The maximum number of evaluations to run in shap's hierarchical image explainer. integer True
num_masks The number of masks to use for the DRISE image explainer for object detection. integer True
mask_res The resolution of the masks to use for the DRISE image explainer for object detection. integer True
dataset_type The type of image dataset to use, whether the images are on private azure blob storage or public urls string public ['private', 'public']

Outputs

Name Description Type
dashboard Path to which RAIVisionInsights is serialized to for connecting to compute instance path
ux_json Json file to which UX is serialized to for viewing in static AzureML Studio UI path

Environment

azureml://registries/azureml/environments/responsibleai-vision-ubuntu20.04-py38-cpu/versions/33

Clone this wiki locally