-
Notifications
You must be signed in to change notification settings - Fork 130
environments automl dnn vision gpu
github-actions[bot] edited this page Apr 30, 2024
·
70 revisions
GPU based environment for finetuning AutoML legacy models for image tasks.
Version: 25
OS : Ubuntu20.04
Training
Preview
View in Studio: https://ml.azure.com/registries/azureml/environments/automl-dnn-vision-gpu/version/25
Docker image: mcr.microsoft.com/azureml/curated/automl-dnn-vision-gpu:25
FROM mcr.microsoft.com/azureml/openmpi4.1.0-cuda11.6-cudnn8-ubuntu20.04:20240429.v1
ENV AZUREML_CONDA_ENVIRONMENT_PATH /azureml-envs/azureml-automl-dnn-vision-gpu
# Prepend path to AzureML conda environment
ENV PATH $AZUREML_CONDA_ENVIRONMENT_PATH/bin:$PATH
COPY --from=mcr.microsoft.com/azureml/mlflow-ubuntu20.04-py38-cpu-inference:20230306.v3 /var/mlflow_resources/mlflow_score_script.py /var/mlflow_resources/mlflow_score_script.py
ENV MLFLOW_MODEL_FOLDER="mlflow-model"
# ENV AML_APP_ROOT="/var/mlflow_resources"
# ENV AZUREML_ENTRY_SCRIPT="mlflow_score_script.py"
ENV ENABLE_METADATA=true
# Create conda environment
COPY conda_dependencies.yaml .
RUN conda env create -p $AZUREML_CONDA_ENVIRONMENT_PATH -f conda_dependencies.yaml -q && \
rm conda_dependencies.yaml && \
conda run -p $AZUREML_CONDA_ENVIRONMENT_PATH && \
conda clean -a -y
# vulnearbility fix
RUN pip install pyarrow==14.0.1
ENV LD_LIBRARY_PATH $AZUREML_CONDA_ENVIRONMENT_PATH/lib:$LD_LIBRARY_PATH
# dummy number to change when needing to force rebuild without changing the definition: 1