Skip to content

models AutoML Image Object Detection

github-actions[bot] edited this page Dec 20, 2023 · 9 revisions

AutoML-Image-Object-Detection

Overview

Automated Machine Learning, or AutoML, is a process that automates the repetitive and time-consuming tasks involved in developing machine learning models. This helps data scientists, analysts, and developers to create models more efficiently and with higher quality, resulting in increased productivity and scalability. AutoML Object Detection enables you to train machine learning models to detect and locate objects of interest in an image. It is a computer vision task that involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories.

With this functionality, you can:

  • Directly use datasets coming from Azure Machine Learning data labeling
  • Utilize labeled data to create image models without any training code.
  • Enhance model performance by selecting the appropriate algorithm and fine-tuning the hyperparameters selecting the appropriate algorithm from a large selection of models or let AutoML find the best model for you.
  • Either download or deploy the resulting model as a endpoint in Azure Machine Learning.
  • Scale the operationalization process with the help of Azure Machine Learning's MLOps and ML Pipelines capabilities.

See How to train image models for more information.

Documentation

Prepare Data

To create computer vision models, it is necessary to provide labeled image data as input for model training. This data needs to be in the form of an MLTable, which can be created from training data in JSONL format. Please see documentation for JSONL Schema and consuming the same in MLTable.

Train a Model

You can initiate individual trials, manual sweeps, or automatic sweeps. It is suggested to begin with an automatic sweep to establish a baseline model. Afterward, you can experiment with individual trials using specific models and hyperparameter configurations. Lastly, manual sweeps can be used to explore multiple hyperparameter values near the more promising models and hyperparameter configurations. This three-step process (automatic sweep, individual trials, manual sweeps) helps avoid searching the entirety of the hyperparameter space, which grows exponentially with the number of hyperparameters.

For more information, see how to configure experiments

Code samples

Task Use case Dataset Python sample (Notebook) CLI with YAML
Image object detection Image object detection fridgeObjects fridgeobjects-object-detection.ipynb cli-automl-image-object-detection-task-fridge-items.yml

Sample inputs and outputs (for real-time inference)

Sample input

{
  "input_data": {
    "columns": [
      "image"
    ],
    "index": [0, 1],
    "data": ["image1", "image2"]
  }
}

Note:

  • "image1" and "image2" should be strings in base64 format.

Sample output

[
    {
        "boxes": [
            {
                "box": {
                    "topX": 0.1,
                    "topY": 0.2,
                    "bottomX": 0.8,
                    "bottomY": 0.7
                },
                "label": "carton",
                "score": 0.98
            }
        ]
    },
    {
        "boxes": [
            {
                "box": {
                    "topX": 0.2,
                    "topY": 0.3,
                    "bottomX": 0.6,
                    "bottomY": 0.5
                },
                "label": "can",
                "score": 0.97
            }
        ]
    }
]

Note: Please refer to object detection output data schema for more detail.

Model inference - visualization

od visualization

Version: 2

Tags

SharedComputeCapacityEnabled license : gnu agpl v3.0 task : object-detection training_dataset : COCO finetune_compute_allow_list : ['Standard_NC4as_T4_v3', 'Standard_NC6s_v3', 'Standard_NC8as_T4_v3', 'Standard_NC12s_v3', 'Standard_NC16as_T4_v3', 'Standard_NC24s_v3', 'Standard_NC64as_T4_v3', 'Standard_NC24ads_A100_v4', 'Standard_NC48ads_A100_v4', 'Standard_NC96ads_A100_v4', 'Standard_ND96asr_v4', 'Standard_ND96amsr_A100_v4', 'Standard_ND40rs_v2'] inference-recommended-sku : ['Standard_DS3_v2', 'Standard_D4a_v4', 'Standard_D4as_v4', 'Standard_DS4_v2', 'Standard_D8a_v4', 'Standard_D8as_v4', 'Standard_DS5_v2', 'Standard_D16a_v4', 'Standard_D16as_v4', 'Standard_D32a_v4', 'Standard_D32as_v4', 'Standard_D48a_v4', 'Standard_D48as_v4', 'Standard_D64a_v4', 'Standard_D64as_v4', 'Standard_D96a_v4', 'Standard_D96as_v4', 'Standard_FX4mds', 'Standard_F8s_v2', 'Standard_FX12mds', 'Standard_F16s_v2', 'Standard_F32s_v2', 'Standard_F48s_v2', 'Standard_F64s_v2', 'Standard_F72s_v2', 'Standard_FX24mds', 'Standard_FX36mds', 'Standard_FX48mds', 'Standard_E4s_v3', 'Standard_E8s_v3', 'Standard_E16s_v3', 'Standard_E32s_v3', 'Standard_E48s_v3', 'Standard_E64s_v3', 'Standard_NC4as_T4_v3', 'Standard_NC6s_v3', 'Standard_NC8as_T4_v3', 'Standard_NC12s_v3', 'Standard_NC16as_T4_v3', 'Standard_NC24s_v3', 'Standard_NC64as_T4_v3', 'Standard_NC24ads_A100_v4', 'Standard_NC48ads_A100_v4', 'Standard_NC96ads_A100_v4', 'Standard_ND96asr_v4', 'Standard_ND96amsr_A100_v4', 'Standard_ND40rs_v2']

View in Studio: https://ml.azure.com/registries/azureml/models/AutoML-Image-Object-Detection/version/2

License: gnu agpl v3.0

Properties

finetune-min-sku-spec: 4|1|28|176

finetuning-tasks: image-object-detection

inference-min-sku-spec: 4|0|14|28

finetune-recommended-sku: Standard_NC4as_T4_v3, Standard_NC6s_v3, Standard_NC8as_T4_v3, Standard_NC12s_v3, Standard_NC16as_T4_v3, Standard_NC24s_v3, Standard_NC64as_T4_v3, Standard_NC24ads_A100_v4, Standard_NC48ads_A100_v4, Standard_NC96ads_A100_v4, Standard_ND96asr_v4, Standard_ND96amsr_A100_v4, Standard_ND40rs_v2

inference-recommended-sku: Standard_DS3_v2, Standard_D4a_v4, Standard_D4as_v4, Standard_DS4_v2, Standard_D8a_v4, Standard_D8as_v4, Standard_DS5_v2, Standard_D16a_v4, Standard_D16as_v4, Standard_D32a_v4, Standard_D32as_v4, Standard_D48a_v4, Standard_D48as_v4, Standard_D64a_v4, Standard_D64as_v4, Standard_D96a_v4, Standard_D96as_v4, Standard_FX4mds, Standard_F8s_v2, Standard_FX12mds, Standard_F16s_v2, Standard_F32s_v2, Standard_F48s_v2, Standard_F64s_v2, Standard_F72s_v2, Standard_FX24mds, Standard_FX36mds, Standard_FX48mds, Standard_E4s_v3, Standard_E8s_v3, Standard_E16s_v3, Standard_E32s_v3, Standard_E48s_v3, Standard_E64s_v3, Standard_NC4as_T4_v3, Standard_NC6s_v3, Standard_NC8as_T4_v3, Standard_NC12s_v3, Standard_NC16as_T4_v3, Standard_NC24s_v3, Standard_NC64as_T4_v3, Standard_NC24ads_A100_v4, Standard_NC48ads_A100_v4, Standard_NC96ads_A100_v4, Standard_ND96asr_v4, Standard_ND96amsr_A100_v4, Standard_ND40rs_v2

Clone this wiki locally