-
Notifications
You must be signed in to change notification settings - Fork 130
models microsoft deberta base
DeBERTa is a version of the BERT model that has been improved through the use of disentangled attention and enhanced mask decoders. It outperforms BERT and RoBERTa on a majority of NLU tasks using 80GB of training data. It has been fine-tuned on NLU tasks and has achieved dev results on SQuAD 1.1/2.0 and MNLI tasks.If you find the model useful please cite the paper.
Please check the official repository for more detailed updates.
Please Note: This model accepts masks in [mask]
format. See Sample input for reference.
The above summary was generated using ChatGPT. Review the original model card to understand the data used to train the model, evaluation metrics, license, intended uses, limitations and bias before using the model.
Inference type | Python sample (Notebook) | CLI with YAML |
---|---|---|
Real time | fill-mask-online-endpoint.ipynb | fill-mask-online-endpoint.sh |
Batch | fill-mask-batch-endpoint.ipynb | coming soon |
Task | Use case | Dataset | Python sample (Notebook) | CLI with YAML |
---|---|---|---|---|
Text Classification | Emotion Detection | Emotion | emotion-detection.ipynb | emotion-detection.sh |
Token Classification | Named Entity Recognition | Conll2003 | named-entity-recognition.ipynb | named-entity-recognition.sh |
Question Answering | Extractive Q&A | SQUAD (Wikipedia) | extractive-qa.ipynb | extractive-qa.sh |
Task | Use case | Python sample (Notebook) | CLI with YAML |
---|---|---|---|
Fill Mask | Fill Mask | rcds/wikipedia-for-mask-filling | evaluate-model-fill-mask.ipynb |
{
"inputs": {
"input_string": ["Paris is the [MASK] of France.", "Today is a [MASK] day!"]
}
}
[
{
"0": "capital"
},
{
"0": "beautiful"
}
]
Version: 12
Preview
computes_allow_list : ['Standard_NV12s_v3', 'Standard_NV24s_v3', 'Standard_NV48s_v3', 'Standard_NC6s_v3', 'Standard_NC12s_v3', 'Standard_NC24s_v3', 'Standard_NC24rs_v3', 'Standard_NC6s_v2', 'Standard_NC12s_v2', 'Standard_NC24s_v2', 'Standard_NC24rs_v2', 'Standard_NC4as_T4_v3', 'Standard_NC8as_T4_v3', 'Standard_NC16as_T4_v3', 'Standard_NC64as_T4_v3', 'Standard_ND6s', 'Standard_ND12s', 'Standard_ND24s', 'Standard_ND24rs', 'Standard_ND40rs_v2', 'Standard_ND96asr_v4']
license : mit
model_specific_defaults : ordereddict({'apply_deepspeed': 'true', 'apply_lora': 'true', 'apply_ort': 'true'})
task : fill-mask
View in Studio: https://ml.azure.com/registries/azureml/models/microsoft-deberta-base/version/12
License: mit
SHA: 0d1b43ccf21b5acd9f4e5f7b077fa698f05cf195
datasets:
evaluation-min-sku-spec: 8|0|28|56
evaluation-recommended-sku: Standard_DS4_v2
finetune-min-sku-spec: 4|1|28|176
finetune-recommended-sku: Standard_NC24rs_v3
finetuning-tasks: text-classification, token-classification, question-answering
inference-min-sku-spec: 4|0|14|28
inference-recommended-sku: Standard_DS3_v2, Standard_D4a_v4, Standard_D4as_v4, Standard_DS4_v2, Standard_D8a_v4, Standard_D8as_v4, Standard_DS5_v2, Standard_D16a_v4, Standard_D16as_v4, Standard_D32a_v4, Standard_D32as_v4, Standard_D48a_v4, Standard_D48as_v4, Standard_D64a_v4, Standard_D64as_v4, Standard_D96a_v4, Standard_D96as_v4, Standard_FX4mds, Standard_F8s_v2, Standard_FX12mds, Standard_F16s_v2, Standard_F32s_v2, Standard_F48s_v2, Standard_F64s_v2, Standard_F72s_v2, Standard_FX24mds, Standard_FX36mds, Standard_FX48mds, Standard_E4s_v3, Standard_E8s_v3, Standard_E16s_v3, Standard_E32s_v3, Standard_E48s_v3, Standard_E64s_v3, Standard_NC4as_T4_v3, Standard_NC6s_v3, Standard_NC8as_T4_v3, Standard_NC12s_v3, Standard_NC16as_T4_v3, Standard_NC24s_v3, Standard_NC64as_T4_v3, Standard_NC24ads_A100_v4, Standard_NC48ads_A100_v4, Standard_NC96ads_A100_v4, Standard_ND96asr_v4, Standard_ND96amsr_A100_v4, Standard_ND40rs_v2
languages: en