Skip to content

models microsoft deberta large mnli

github-actions[bot] edited this page Oct 27, 2023 · 22 revisions

microsoft-deberta-large-mnli

Overview

DeBERTa is an improvement of BERT and RoBERTa using disentangled attention and enhanced mask decoder. With 80GB training data, it outperforms BERT and RoBERTa on the majority of NLU tasks. The fine-tuned DeBERTa with MNLI task results in the best performance on SQuAD 1.1/2.0 and GLUE benchmark tasks. Further information is available in the official repository and the related paper.

The above summary was generated using ChatGPT. Review the original model card to understand the data used to train the model, evaluation metrics, license, intended uses, limitations and bias before using the model.

Inference samples

Inference type Python sample (Notebook) CLI with YAML
Real time text-classification-online-endpoint.ipynb text-classification-online-endpoint.sh
Batch entailment-contradiction-batch.ipynb coming soon

Finetuning samples

Task Use case Dataset Python sample (Notebook) CLI with YAML
Text Classification Emotion Detection Emotion emotion-detection.ipynb emotion-detection.sh
Token Classification Named Entity Recognition Conll2003 named-entity-recognition.ipynb named-entity-recognition.sh

Model Evaluation

Task Use case Dataset Python sample (Notebook) CLI with YAML
Text Classification Textual Entailment MNLI evaluate-model-text-classification.ipynb evaluate-model-text-classification.yml

Sample inputs and outputs (for real-time inference)

Sample input

{
    "inputs": {
        "input_string": ["Today was an amazing day!", "It was an unfortunate series of events."]
    }
}

Sample output

[
    {
        "0": "NEUTRAL"
    },
    {
        "0": "NEUTRAL"
    }
]

Version: 10

Tags

Preview computes_allow_list : ['Standard_NV12s_v3', 'Standard_NV24s_v3', 'Standard_NV48s_v3', 'Standard_NC6s_v3', 'Standard_NC12s_v3', 'Standard_NC24s_v3', 'Standard_NC24rs_v3', 'Standard_NC6s_v2', 'Standard_NC12s_v2', 'Standard_NC24s_v2', 'Standard_NC24rs_v2', 'Standard_NC4as_T4_v3', 'Standard_NC8as_T4_v3', 'Standard_NC16as_T4_v3', 'Standard_NC64as_T4_v3', 'Standard_ND6s', 'Standard_ND12s', 'Standard_ND24s', 'Standard_ND24rs', 'Standard_ND40rs_v2', 'Standard_ND96asr_v4'] license : mit model_specific_defaults : ordereddict({'apply_deepspeed': 'true', 'apply_lora': 'true', 'apply_ort': 'true'}) task : text-classification

View in Studio: https://ml.azure.com/registries/azureml/models/microsoft-deberta-large-mnli/version/10

License: mit

Properties

SHA: 7296194b9009373def4f7c5dad292651e4b5cf4e

datasets:

evaluation-min-sku-spec: 8|0|28|56

evaluation-recommended-sku: Standard_DS4_v2

finetune-min-sku-spec: 4|1|28|176

finetune-recommended-sku: Standard_NC24rs_v3

finetuning-tasks: text-classification, token-classification

inference-min-sku-spec: 2|0|7|14

inference-recommended-sku: Standard_DS2_v2, Standard_D2a_v4, Standard_D2as_v4, Standard_DS3_v2, Standard_D4a_v4, Standard_D4as_v4, Standard_DS4_v2, Standard_D8a_v4, Standard_D8as_v4, Standard_DS5_v2, Standard_D16a_v4, Standard_D16as_v4, Standard_D32a_v4, Standard_D32as_v4, Standard_D48a_v4, Standard_D48as_v4, Standard_D64a_v4, Standard_D64as_v4, Standard_D96a_v4, Standard_D96as_v4, Standard_F4s_v2, Standard_FX4mds, Standard_F8s_v2, Standard_FX12mds, Standard_F16s_v2, Standard_F32s_v2, Standard_F48s_v2, Standard_F64s_v2, Standard_F72s_v2, Standard_FX24mds, Standard_FX36mds, Standard_FX48mds, Standard_E2s_v3, Standard_E4s_v3, Standard_E8s_v3, Standard_E16s_v3, Standard_E32s_v3, Standard_E48s_v3, Standard_E64s_v3, Standard_NC4as_T4_v3, Standard_NC6s_v3, Standard_NC8as_T4_v3, Standard_NC12s_v3, Standard_NC16as_T4_v3, Standard_NC24s_v3, Standard_NC64as_T4_v3, Standard_NC24ads_A100_v4, Standard_NC48ads_A100_v4, Standard_NC96ads_A100_v4, Standard_ND96asr_v4, Standard_ND96amsr_A100_v4, Standard_ND40rs_v2

languages: en

Clone this wiki locally