“GH-NeRF”, is a NeRF-like model which uses 3D multivariate Gaussian random variables along with Spherical Harmonics to accelerate the training process by 25% and also, tackle the problem of excessively blurring or alias of the original NeRF implementation, lowering the error rate by 6.4% relative to NeRF on LLFF dataset.
TL;DR: Mip-NeRF + NeRF-SH (promoted by Spherical Harmonics) implementation in Pytorch
Preliminaries:
cd GH-NeRF
pip install -r requirements.txt
To download dataset:
bash scripts/download_llff.sh
to download LLFF
To train the model:
python run_nerf.py --config configs/trex.txt
Project Layout:
├─configs
├─data
│ ├─nerf_llff_data
│ ├─fern
│ │ ├─images
│ │ ├─images_4
│ │ ├─images_8
│ │ ├─mpis4
│ │ └─sparse
│ │ └─0
│ └─trex
│ ├─images
│ ├─images_4
│ ├─images_8
│ ├─outputs
│ └─sparse
│ └─0
├─logs
│ ├─fern_test
│ │ └─train
│ └─trex_test
│ ├─testset_200000
| ├─...
│ └─train
├─scripts
├─static
trex:
see ./static/paper.pdf
in the project.
- NeRF
- Mip-NeRF
- MINE: Continuous-Depth MPI with Neural Radiance Fields
- PlenOctrees
- Plenoxels
- nerf-pytorch
- mipnerf-pytorch