This repository holds the PyTorch implementation for DreamArrangement: Learning Language-Conditioned Robotic Rearrangement of Objects via Denoising Diffusion and VLM Planner.
Install the conda environment:
conda create -n dreamrearrange python=3.8
conda install pytorch=1.11.0 cudatoolkit=11.3 torchvision=0.12.0 -c pytorch
pip install opencv-python scipy scikit-learn matplotlib pandas ortools omegaconf ipykernel ipywidgets
pip install git+https://hub.nuaa.cf/openai/CLIP.git
2D-Tabletop dataset
: It includes two parts: YCB_kitchen_data for horizontal, vertical, and circle scenes, YCB_Inpainted_data for containing scenes. The data are processed already and can be directly used for training. They should be placed in thedata
folder.
To train for 2D-Tabletop data:
python train.py --train 1 --use_position 0 --use_time 0 --train_epoch 30000 --train_pos_noise_level_stddev 1.0 --train_ang_noise_level_stddev 1.047198 --train_within_floorplan 1 --train_batch_size 64 --text_form word --data_augment 4 --use_emd 1 --use_move_less 1 --data_type YCB_kitchen YCB_Inpainted
We provide DreamArrangement weights pretrained on 2D-Tabletop for 30k iterations.
To run evaluation for 2D-Tabletop data:
python train.py --train 0 --use_position 0 --use_time 0 --denoise_within_floorplan 1 --text_form word --use_emd 1 --use_move_less 1 --data_type YCB_kitchen YCB_Inpainted --model_path <full-path-to-model>
If you find our work useful in your research, please cite: