Skip to content

Official PyTorch implementation for "DreamArrangement: Learning Language-Conditioned Robotic Rearrangement of Objects via Denoising Diffusion and VLM Planner"

Notifications You must be signed in to change notification settings

Big-Brother-Pikachu/DreamArrangement

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DreamArrangement: Language-Conditioned Robotic Object Rearrangement

This repository holds the PyTorch implementation for DreamArrangement: Learning Language-Conditioned Robotic Rearrangement of Objects via Denoising Diffusion and VLM Planner.

Environment

Install the conda environment:

conda create -n dreamrearrange python=3.8
conda install pytorch=1.11.0 cudatoolkit=11.3 torchvision=0.12.0 -c pytorch
pip install opencv-python scipy scikit-learn matplotlib pandas ortools omegaconf ipykernel ipywidgets
pip install git+https://hub.nuaa.cf/openai/CLIP.git

Datasets

  • 2D-Tabletop dataset: It includes two parts: YCB_kitchen_data for horizontal, vertical, and circle scenes, YCB_Inpainted_data for containing scenes. The data are processed already and can be directly used for training. They should be placed in the data folder.

Training

2D-Tabletop

To train for 2D-Tabletop data:

python train.py  --train 1 --use_position 0 --use_time 0 --train_epoch 30000  --train_pos_noise_level_stddev 1.0 --train_ang_noise_level_stddev 1.047198  --train_within_floorplan 1 --train_batch_size 64 --text_form word --data_augment 4 --use_emd 1 --use_move_less 1 --data_type YCB_kitchen YCB_Inpainted

Pretrained Weights

We provide DreamArrangement weights pretrained on 2D-Tabletop for 30k iterations.

Evaluation

2D-Tabletop

To run evaluation for 2D-Tabletop data:

python train.py  --train 0 --use_position 0 --use_time 0 --denoise_within_floorplan 1 --text_form word --use_emd 1 --use_move_less 1 --data_type YCB_kitchen YCB_Inpainted --model_path <full-path-to-model>

Acknowledgments

Citation

If you find our work useful in your research, please cite:

About

Official PyTorch implementation for "DreamArrangement: Learning Language-Conditioned Robotic Rearrangement of Objects via Denoising Diffusion and VLM Planner"

Topics

Resources

Stars

Watchers

Forks