generated from CogitoNTNU/README-template
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #15 from CogitoNTNU/astream_events_experiment
Merge astream_events branch into main
- Loading branch information
Showing
2 changed files
with
145 additions
and
13 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,119 @@ | ||
from langchain_openai import ChatOpenAI | ||
from graphstate import GraphState | ||
from tools.tools import get_tools | ||
from langgraph.graph import StateGraph, START, END | ||
from langgraph.prebuilt import ToolNode, tools_condition | ||
from langchain_core.messages import BaseMessage, AIMessageChunk, HumanMessage | ||
from models import Model | ||
import json | ||
from config import OPENAI_API_KEY | ||
|
||
|
||
|
||
class Agent1: | ||
llm = ChatOpenAI( | ||
model = Model.gpt_4o, | ||
temperature=0, | ||
max_tokens=512, | ||
#streaming=True, #Can't use because of metadata | ||
) | ||
|
||
|
||
class Agent: | ||
def __init__(self, model_type) -> None: | ||
#Langsmith Tracing | ||
LANGCHAIN_TRACING_V2: str = "true" | ||
|
||
self.llm = ChatOpenAI( | ||
model=model_type, | ||
temperature=0, | ||
max_tokens=512, | ||
) | ||
|
||
self.llm_with_tools = self.llm.bind_tools(get_tools()) | ||
|
||
self.workflow = StateGraph(GraphState) | ||
|
||
# Adding nodes to the workflow | ||
self.workflow.add_node("chatbot", self.chatbot) | ||
self.workflow.add_node("tools", ToolNode(get_tools())) | ||
# TODO: Visualize these tools | ||
|
||
# Defining edges between nodes | ||
self.workflow.add_edge(START, "chatbot") | ||
self.workflow.add_edge("tools", "chatbot") | ||
self.workflow.add_edge("chatbot", END) | ||
|
||
# Defining conditional edges | ||
self.workflow.add_conditional_edges( | ||
"chatbot", | ||
tools_condition | ||
) | ||
|
||
self.graph = self.workflow.compile() # Compiles the workflow in a graph. | ||
|
||
#Saving image of graph node comment in and out as needed | ||
#with open("core/graph_node_network.png", 'wb') as f: | ||
# f.write(self.graph.get_graph().draw_mermaid_png()) | ||
|
||
def chatbot(self, state: GraphState): | ||
""" | ||
Simple bot that invokes the list of previous messages | ||
and returns the result which will be added to the list of messages. | ||
""" | ||
#state_of_chatbot = self.llm_with_tools.invoke(state["messages"]).tool_calls | ||
#print("Tools called: " + state_of_chatbot["name"][-1].content) | ||
|
||
return {"messages": [self.llm_with_tools.invoke(state["messages"])]} | ||
|
||
|
||
# UNFINISHED | ||
def run_stream_only(self, user_prompt: str): | ||
""" | ||
Run the agent, returning a token stream. | ||
""" | ||
print('Running stream...') | ||
print(user_prompt) | ||
print(type(user_prompt)) | ||
for chunk in self.llm.stream(user_prompt): | ||
yield chunk.content | ||
|
||
#for running the agent comment out for testing in terminal | ||
def run(self, user_prompt: str) -> tuple[str, int]: | ||
""" | ||
Run the agent with a user prompt and return a tuple containing the llm | ||
response and the total amount of tokens used. | ||
""" | ||
first = True | ||
for event in self.graph.stream("tell me about orcas?"): | ||
for value in event.values(): | ||
messages = value["messages"][-1] | ||
gathered = "" | ||
# if messages.content and not isinstance(messages, HumanMessage): | ||
# print(messages.content, end="|", flush=True) | ||
|
||
gathered += messages | ||
|
||
if isinstance(messages, BaseMessage): | ||
if hasattr(messages, 'usage_metadata'): | ||
total_tokens = messages.usage_metadata.get('total_tokens', 0) | ||
gathered += messages.content | ||
else: | ||
print(f"Warning: Message of type {type(messages)} does not have usage_metadata") | ||
|
||
return gathered, total_tokens | ||
|
||
#for testing in terminal | ||
""" def run(self, user_prompt: str): | ||
for event in self.graph.stream({"messages": [("user", user_prompt)]}): | ||
for value in event.values(): | ||
if isinstance(value["messages"][-1], BaseMessage): | ||
print("Assistant:", value["messages"][-1].content) | ||
if __name__ == "__main__": | ||
agent = Agent("gpt-4o-mini") | ||
while True: | ||
user_prompt = input("User: ") | ||
agent.run(user_prompt) """ | ||
|
||
# Counting tokens: https://python.langchain.com/docs/how_to/llm_token_usage_tracking/ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters