-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Showing
1 changed file
with
48 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,48 @@ | ||
import tensorflow as tf | ||
import tensorflow_hub as hub | ||
import numpy as np | ||
from tensorflow.keras.preprocessing.sequence import pad_sequences | ||
from sklearn.preprocessing import LabelEncoder | ||
from tensorflow.keras.layers import LSTM, GRU, Embedding | ||
|
||
# تحميل نموذج BERT | ||
module_url = "https://tfhub.dev/google/bert_uncased_L-12_H-768_A-12/1" | ||
bert_layer = hub.KerasLayer(module_url, trainable=False) | ||
|
||
# بيانات تدريب متنوعة | ||
texts = ["I am happy", "I feel sad", "This is great", "I am angry", "I love this", "I am confused", "Feeling ecstatic today!"] | ||
labels = ["positive", "negative", "positive", "negative", "positive", "neutral", "positive"] | ||
|
||
# تحويل النصوص إلى أرقام باستخدام Tokenizer | ||
tokenizer = tf.keras.preprocessing.text.Tokenizer() | ||
tokenizer.fit_on_texts(texts) | ||
sequences = tokenizer.texts_to_sequences(texts) | ||
padded_sequences = pad_sequences(sequences, padding='post') | ||
|
||
# ترميز الأهداف (المشاعر) | ||
label_encoder = LabelEncoder() | ||
encoded_labels = label_encoder.fit_transform(labels) | ||
|
||
# بناء نموذج باستخدام BERT و LSTM | ||
model = tf.keras.Sequential([ | ||
bert_layer, | ||
LSTM(128, return_sequences=False), # إضافة LSTM | ||
tf.keras.layers.Dense(64, activation='relu'), | ||
tf.keras.layers.Dense(1, activation='sigmoid') | ||
]) | ||
|
||
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) | ||
|
||
# تدريب النموذج | ||
model.fit(padded_sequences, np.array(encoded_labels), epochs=10) | ||
|
||
# اختبار النموذج | ||
test_text = ["I am feeling excited"] | ||
test_sequence = tokenizer.texts_to_sequences(test_text) | ||
test_padded = pad_sequences(test_sequence, padding='post', maxlen=10) | ||
|
||
# التنبؤ بالمشاعر | ||
pred = model.predict(test_padded) | ||
pred_label = label_encoder.inverse_transform([int(pred[0][0] > 0.5)])[0] | ||
|
||
print(f"Predicted Emotion: {pred_label}") |