Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adds function to sample n trajectories of a specified length to MinariDataset #134

Draft
wants to merge 6 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
71 changes: 64 additions & 7 deletions minari/dataset/minari_dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,9 @@
import re
from dataclasses import dataclass, field
from typing import Callable, Iterable, Iterator, List, Optional, Union
from random import choices, randrange, choice
from collections import Counter


import gymnasium as gym
import numpy as np
Expand Down Expand Up @@ -41,11 +44,15 @@ def parse_dataset_id(dataset_id: str) -> tuple[str | None, str, int]:
return env_name, dataset_name, version




@dataclass(frozen=True)
class EpisodeData:
"""Contains the datasets data for a single episode.

This is the object returned by :class:`minari.MinariDataset.sample_episodes`.
This is the object returned by :class:`minari.MinariDataset.sample_episodes` and :class:`minari.MinariDataset.sample_trajectories`.

In instances of `EpisodeData` returned by :class:`minari.MinariDataset.sample_trajectories`, `id` refers to the id of the starting episode.
"""

id: int
Expand Down Expand Up @@ -141,17 +148,20 @@ def __init__(
self._additional_data_id = 0
if episode_indices is None:
episode_indices = np.arange(self._data.total_episodes)
total_steps = self._data.total_steps
else:
total_steps = sum(
self._data.apply(
lambda episode: episode["total_timesteps"],
episode_indices=episode_indices,
)
)

self._episode_indices = episode_indices

assert self._episode_indices is not None

total_steps = sum(
self._data.apply(
lambda episode: episode["total_timesteps"],
episode_indices=self._episode_indices,
)
)


self.spec = MinariDatasetSpec(
env_spec=self._data.env_spec,
Expand Down Expand Up @@ -233,6 +243,53 @@ def sample_episodes(self, n_episodes: int) -> Iterable[EpisodeData]:
episodes = self._data.get_episodes(indices)
return list(map(lambda data: EpisodeData(**data), episodes))


def sample_trajectories(self, n_trajectories, trajectory_length, allow_restarts=False):
if allow_restarts:
total_steps = self.spec.total_steps

starts = choices(0,total_steps-trajectory_length, k=n_trajectories)
assert False
else:


#We only want to load each episode once. We need to discard episodes that are too short for our trajectory length.
#We mark such episodes so they will not be sampled again, while always preserving uniform random sampling over all
#episodes not known to be invalid.
valid_episode_indices = {key:1 for key in range(0,self.spec.total_episodes)}
counts = {}
episodes = []
samples = 0
while samples < n_trajectories:
index = choice(list(valid_episode_indices.keys()))
if index in counts:
counts[index] += 1
else:
sampled_episode = self._data.get_episodes([index])[0]
print(sampled_episode.keys())
if sampled_episode["total_timesteps"] < n_trajectories:
del valid_episode_indices[index]
else:
episodes.append(sampled_episode)
samples += 1
counts[index] = 1

result = []
for episode in episodes:
for i in range(counts[episode["id"]]):
print(episode["total_timesteps"])
print(trajectory_length)
if episode["total_timesteps"] == trajectory_length:
result.append(EpisodeData(** episode))
elif episode["total_timesteps"] > trajectory_length:
start = randrange(0, episode["total_timesteps"]-trajectory_length)
trajectory = EpisodeData( id= episode["id"], actions = episode["actions"][start:start+trajectory_length],seed= episode["seed"], observations = episode["observations"][start:start+trajectory_length+1], truncations = episode["truncations"][start:start+trajectory_length],terminations = episode["terminations"][start:start+trajectory_length], rewards = episode["rewards"][start:start+trajectory_length],total_timesteps = trajectory_length)
result.append(trajectory)
else:
assert False
return result


def iterate_episodes(
self, episode_indices: Optional[List[int]] = None
) -> Iterator[EpisodeData]:
Expand Down
12 changes: 9 additions & 3 deletions minari/dataset/minari_storage.py
Original file line number Diff line number Diff line change
Expand Up @@ -205,15 +205,18 @@ def update_from_collector_env(
"id", last_episode_id + id
)

self._total_steps = file.attrs["total_steps"] + new_data_total_steps

# Update metadata of minari dataset
file.attrs.modify(
"total_episodes", last_episode_id + new_data_total_episodes
)
file.attrs.modify(
"total_steps", file.attrs["total_steps"] + new_data_total_steps
"total_steps", self._total_steps
)
self._total_episodes = int(file.attrs["total_episodes"].item())


def update_from_buffer(self, buffer: List[dict], data_path: str):
additional_steps = 0
with h5py.File(data_path, "a", track_order=True) as file:
Expand Down Expand Up @@ -247,9 +250,12 @@ def update_from_buffer(self, buffer: List[dict], data_path: str):

# TODO: save EpisodeMetadataCallback callback in MinariDataset and update new episode group metadata

file.attrs.modify("total_episodes", last_episode_id + len(buffer))
self._total_steps = file.attrs["total_steps"] + additional_steps
self._total_episodes = last_episode_id + len(buffer)

file.attrs.modify("total_episodes", self._total_episodes)
file.attrs.modify(
"total_steps", file.attrs["total_steps"] + additional_steps
"total_steps", self._total_steps
)

self._total_episodes = int(file.attrs["total_episodes"].item())
Expand Down
40 changes: 18 additions & 22 deletions minari/storage/hosting.py
Original file line number Diff line number Diff line change
Expand Up @@ -225,33 +225,29 @@ def list_remote_datasets(
Dict[str, Dict[str, str]]: keys the names of the Minari datasets and values the metadata
"""
client = storage.Client.create_anonymous_client()
bucket = client.bucket("minari-datasets")
blobs = bucket.list_blobs(delimiter="main_data.hdf5")

# Necessary to get prefixes iterable
next(blobs)
blobs = client.list_blobs(bucket_or_name="minari-datasets")

# Generate dict = {'env_name-dataset_name': (version, metadata)}
remote_datasets = {}
for prefix in sorted(blobs.prefixes):
blob = bucket.get_blob(prefix)
for blob in blobs:
try:
metadata = blob.metadata
if compatible_minari_version and __version__ not in SpecifierSet(
metadata["minari_version"]
):
continue
dataset_id = metadata["dataset_id"]
env_name, dataset_name, version = parse_dataset_id(dataset_id)
dataset = f"{env_name}-{dataset_name}"
if latest_version:
if (
dataset not in remote_datasets
or version > remote_datasets[dataset][0]
if blob.name.endswith("main_data.hdf5"):
metadata = blob.metadata
if compatible_minari_version and __version__ not in SpecifierSet(
metadata["minari_version"]
):
remote_datasets[dataset] = (version, metadata)
else:
remote_datasets[dataset_id] = metadata
continue
dataset_id = metadata["dataset_id"]
env_name, dataset_name, version = parse_dataset_id(dataset_id)
dataset = f"{env_name}-{dataset_name}"
if latest_version:
if (
dataset not in remote_datasets
or version > remote_datasets[dataset][0]
):
remote_datasets[dataset] = (version, metadata)
else:
remote_datasets[dataset_id] = metadata
except Exception:
warnings.warn(f"Misconfigured dataset named {blob.name} on remote")

Expand Down
6 changes: 3 additions & 3 deletions minari/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -467,9 +467,9 @@ def create_dataset_from_buffers(
)

eps_group.attrs["id"] = i
total_steps = len(eps_buff["actions"])
eps_group.attrs["total_steps"] = total_steps
total_steps += total_steps
episode_total_steps = len(eps_buff["actions"])
eps_group.attrs["total_steps"] = episode_total_steps
total_steps += episode_total_steps

if seed is None:
eps_group.attrs["seed"] = str(None)
Expand Down
Loading