Skip to content

PyTorch person re-identification models, scripts, pretrained weights

Notifications You must be signed in to change notification settings

HWliiu/pytorch-reid-models

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PyTorch Person Re-identification Models


We collected some ReID models from open-source projects and provided a unified interface to access them. We retrained these models on three datasets: Market1501, DukeMTMCReID, and MSMT17 using the original open-source code and can automatically load these trained model weights at runtime. For specific usage examples, see test.py.

The main directory structure

.
├── reid_models
│   ├── data # data load module
│   │   ├── build.py # dataset and dataloader building function
│   │   ├── datasets
│   │   ├── samplers
│   │   └── transforms
│   ├── evaluate # metrics evaluation module
│   │   ├── estimator.py
│   │   ├── eval_function.py # cuda-accelerated reid evaluation function
│   │   └── matcher.py
│   └── modeling # model building module
│       ├── build.py # model building and loading trained weights function
│       ├── models_config.yaml # model configs file
│       └── third_party_models # third-party open source reid models
│           ├── ABDNet
│           ├── AGWNet
│           ├── APNet
│           ├── DeepPersonReid
│           ├── FastReID
│           ├── ReidStrongBaseline
│           └── TransReID
├── tools # some useful tools
│   ├── imagenet_pretrain.py # imagent data pre-training
│   ├── preprocessing_imagenet.py # offline resize image, for faster data loading
│   ├── visualizer_ranklist.py # visualize match results
│   ├── visualizer_ranklist_with_gradcam.py # # visualize match results with gradcam
│   └── visualizer_tsne.py # visualize tsne
├── train.py # reid model training
├── test.py # reid model testing

Highlights

Configuration files

Visualization

  • Visual matching samples

  • Visual matching samples with gradcam

  • Visual TSNE

Model metrics

Dataset Model Top1 Top5 mAP mINP MACs Params
dukemtmcreid densenet121_abd 0.885 0.940 0.775 0.410 5.619G 37.569M
market1501 densenet121_abd 0.953 0.984 0.876 0.639 5.619G 37.719M
msmt17 densenet121_abd 0.817 0.903 0.591 0.151 5.620G 38.611M
dukemtmcreid resnet50_abd 0.878 0.941 0.773 0.398 9.377G 69.025M
market1501 resnet50_abd 0.950 0.983 0.872 0.634 9.377G 69.175M
msmt17 resnet50_abd 0.800 0.897 0.579 0.143 9.378G 70.067M
dukemtmcreid resnet50_agw 0.892 0.951 0.796 0.454 4.094G 23.541M
market1501 resnet50_agw 0.955 0.983 0.883 0.653 4.094G 23.541M
msmt17 resnet50_agw 0.789 0.885 0.554 0.128 4.094G 23.541M
dukemtmcreid resnet50_ap 0.897 0.954 0.800 0.457 16.357G 51.281M
market1501 resnet50_ap 0.952 0.985 0.890 0.676 16.357G 51.281M
msmt17 resnet50_ap 0.792 0.892 0.575 0.145 16.357G 51.281M
dukemtmcreid mlfn_dpr 0.809 0.903 0.642 0.250 2.812G 32.473M
market1501 mlfn_dpr 0.897 0.960 0.747 0.423 2.812G 32.473M
msmt17 mlfn_dpr 0.673 0.803 0.390 0.059 2.812G 32.473M
dukemtmcreid osnet_x1_0_dpr 0.878 0.938 0.764 0.403 1.013G 2.170M
market1501 osnet_x1_0_dpr 0.950 0.980 0.865 0.614 1.013G 2.170M
msmt17 osnet_x1_0_dpr 0.784 0.882 0.547 0.128 1.013G 2.170M
dukemtmcreid osnet_ain_x1_0_dpr 0.869 0.943 0.744 0.364 1.013G 2.170M
market1501 osnet_ain_x1_0_dpr 0.933 0.975 0.836 0.551 1.013G 2.170M
msmt17 osnet_ain_x1_0_dpr 0.765 0.871 0.508 0.101 1.013G 2.170M
dukemtmcreid osnet_ibn_x1_0_dpr 0.869 0.941 0.743 0.361 1.017G 2.171M
market1501 osnet_ibn_x1_0_dpr 0.939 0.976 0.836 0.553 1.017G 2.171M
msmt17 osnet_ibn_x1_0_dpr 0.767 0.871 0.503 0.095 1.017G 2.171M
dukemtmcreid resnet50_bot 0.860 0.938 0.765 0.402 4.087G 23.512M
market1501 resnet50_bot 0.941 0.982 0.857 0.593 4.087G 23.512M
msmt17 resnet50_bot 0.739 0.854 0.503 0.106 4.087G 23.512M
dukemtmcreid resnet50_ibn_a_bot 0.889 0.952 0.792 0.445 4.087G 23.512M
market1501 resnet50_ibn_a_bot 0.952 0.986 0.872 0.633 4.087G 23.512M
msmt17 resnet50_ibn_a_bot 0.792 0.885 0.565 0.135 4.087G 23.512M
dukemtmcreid se_resnet50_bot 0.868 0.943 0.768 0.407 3.992G 26.043M
market1501 se_resnet50_bot 0.944 0.982 0.864 0.607 3.992G 26.043M
msmt17 se_resnet50_bot 0.687 0.819 0.460 0.092 3.992G 26.043M
dukemtmcreid se_resnext50_bot 0.884 0.950 0.786 0.433 4.104G 25.515M
market1501 se_resnext50_bot 0.949 0.985 0.879 0.645 4.104G 25.515M
msmt17 se_resnext50_bot 0.768 0.869 0.546 0.129 4.104G 25.515M
dukemtmcreid senet154_bot 0.880 0.950 0.782 0.428 17.136G 113.044M
market1501 senet154_bot 0.946 0.981 0.865 0.612 17.136G 113.044M
msmt17 senet154_bot 0.812 0.900 0.584 0.142 17.136G 113.044M
dukemtmcreid deit_transreid 0.907 0.958 0.819 0.486 - -
market1501 deit_transreid 0.950 0.983 0.885 0.672 - -
msmt17 deit_transreid 0.840 0.919 0.663 0.238 - -
dukemtmcreid vit_base_transreid 0.890 0.954 0.796 0.454 11.042G 85.648M
market1501 vit_base_transreid 0.946 0.982 0.871 0.641 11.042G 85.648M
msmt17 vit_base_transreid 0.817 0.906 0.618 0.204 11.042G 85.648M
dukemtmcreid vit_transreid 0.908 0.960 0.821 0.503 - -
market1501 vit_transreid 0.951 0.984 0.890 0.693 - -
msmt17 vit_transreid 0.853 0.925 0.678 0.257 - -
dukemtmcreid agw_R50_fastreid 0.891 0.948 0.791 0.445 4.057G 23.475M
market1501 agw_R50_fastreid 0.953 0.987 0.883 0.654 4.057G 23.475M
msmt17 agw_R50_fastreid 0.792 0.883 0.557 0.129 4.057G 23.475M
dukemtmcreid agw_R50_ibn_fastreid 0.908 0.955 0.806 0.471 4.059G 23.478M
market1501 agw_R50_ibn_fastreid 0.955 0.982 0.889 0.674 4.059G 23.478M
msmt17 agw_R50_ibn_fastreid 0.818 0.903 0.595 0.155 4.059G 23.478M
dukemtmcreid agw_R101_ibn_fastreid 0.908 0.953 0.810 0.476 6.488G 42.453M
market1501 agw_R101_ibn_fastreid 0.953 0.985 0.891 0.682 6.488G 42.453M
msmt17 agw_R101_ibn_fastreid 0.825 0.906 0.611 0.167 6.488G 42.453M
dukemtmcreid agw_S50_fastreid 0.907 0.957 0.811 0.475 4.665G 25.370M
market1501 agw_S50_fastreid 0.952 0.983 0.892 0.684 4.665G 25.370M
msmt17 agw_S50_fastreid 0.838 0.915 0.646 0.192 4.665G 25.370M
dukemtmcreid bagtricks_mobilenet_v3_large_fastreid 0.823 0.920 0.691 0.299 179.652M 4.176M
market1501 bagtricks_mobilenet_v3_large_fastreid 0.914 0.973 0.790 0.450 179.652M 4.176M
msmt17 bagtricks_mobilenet_v3_large_fastreid 0.680 0.814 0.426 0.069 179.652M 4.176M
dukemtmcreid bagtricks_osnet_ibn_x1_0_fastreid 0.876 0.943 0.750 0.384 986.660M 1.885M
market1501 bagtricks_osnet_ibn_x1_0_fastreid 0.936 0.977 0.841 0.561 986.660M 1.885M
msmt17 bagtricks_osnet_ibn_x1_0_fastreid 0.782 0.884 0.527 0.108 986.660M 1.885M
dukemtmcreid bagtricks_osnet_x1_0_fastreid 0.879 0.945 0.769 0.405 980.369M 1.884M
market1501 bagtricks_osnet_x1_0_fastreid 0.941 0.979 0.863 0.610 980.369M 1.884M
msmt17 bagtricks_osnet_x1_0_fastreid 0.802 0.896 0.570 0.138 980.369M 1.884M
dukemtmcreid bagtricks_R50_fastreid 0.869 0.946 0.766 0.402 4.053G 23.455M
market1501 bagtricks_R50_fastreid 0.945 0.982 0.861 0.600 4.053G 23.455M
msmt17 bagtricks_R50_fastreid 0.752 0.862 0.516 0.111 4.053G 23.455M
dukemtmcreid bagtricks_SeR50_fastreid 0.858 0.937 0.751 0.386 4.060G 25.970M
market1501 bagtricks_SeR50_fastreid 0.942 0.982 0.856 0.594 4.060G 25.970M
msmt17 bagtricks_SeR50_fastreid 0.742 0.855 0.505 0.107 4.060G 25.970M
dukemtmcreid bagtricks_R50_ibn_fastreid 0.899 0.952 0.788 0.437 4.056G 23.457M
market1501 bagtricks_R50_ibn_fastreid 0.954 0.982 0.879 0.647 4.056G 23.457M
msmt17 bagtricks_R50_ibn_fastreid 0.794 0.889 0.565 0.137 4.056G 23.457M
dukemtmcreid bagtricks_R101_ibn_fastreid 0.897 0.953 0.796 0.451 6.481G 42.401M
market1501 bagtricks_R101_ibn_fastreid 0.955 0.983 0.886 0.674 6.481G 42.401M
msmt17 bagtricks_R101_ibn_fastreid 0.815 0.900 0.593 0.153 6.481G 42.401M
dukemtmcreid bagtricks_S50_fastreid 0.897 0.953 0.797 0.455 4.665G 25.370M
market1501 bagtricks_S50_fastreid 0.952 0.983 0.886 0.668 4.665G 25.370M
msmt17 bagtricks_S50_fastreid 0.818 0.905 0.607 0.169 4.665G 25.370M
dukemtmcreid bagtricks_convnext_tiny_fastreid 0.807 0.898 0.657 0.260 4.248G 26.630M
market1501 bagtricks_convnext_tiny_fastreid 0.906 0.967 0.768 0.431 4.248G 26.630M
msmt17 bagtricks_convnext_tiny_fastreid 0.644 0.784 0.380 0.057 4.248G 26.630M
dukemtmcreid bagtricks_densenet121_fastreid 0.853 0.935 0.727 0.335 1.850G 6.870M
market1501 bagtricks_densenet121_fastreid 0.926 0.975 0.820 0.511 1.850G 6.870M
msmt17 bagtricks_densenet121_fastreid 0.729 0.850 0.473 0.084 1.850G 6.870M
dukemtmcreid bagtricks_inception_resnet_v2_fastreid 0.846 0.924 0.699 0.307 3.784G 54.306M
market1501 bagtricks_inception_resnet_v2_fastreid 0.922 0.973 0.789 0.427 3.784G 54.306M
msmt17 bagtricks_inception_resnet_v2_fastreid 0.703 0.829 0.438 0.072 3.784G 54.306M
dukemtmcreid bagtricks_inception_v3_fastreid 0.829 0.914 0.677 0.284 1.681G 21.786M
market1501 bagtricks_inception_v3_fastreid 0.918 0.971 0.789 0.462 1.681G 21.786M
msmt17 bagtricks_inception_v3_fastreid 0.666 0.794 0.388 0.056 1.681G 21.786M
dukemtmcreid bagtricks_inception_v4_fastreid 0.809 0.896 0.658 0.237 3.630G 41.143M
market1501 bagtricks_inception_v4_fastreid 0.894 0.957 0.749 0.402 3.630G 41.143M
msmt17 bagtricks_inception_v4_fastreid 0.614 0.766 0.342 0.039 3.630G 41.143M
dukemtmcreid sbs_R50_fastreid 0.904 0.952 0.798 0.453 4.057G 23.475M
market1501 sbs_R50_fastreid 0.957 0.984 0.881 0.653 4.057G 23.475M
msmt17 sbs_R50_fastreid 0.822 0.906 0.583 0.134 4.057G 23.475M
dukemtmcreid sbs_R50_ibn_fastreid 0.902 0.952 0.800 0.449 4.059G 23.478M
market1501 sbs_R50_ibn_fastreid 0.954 0.984 0.883 0.657 4.059G 23.478M
msmt17 sbs_R50_ibn_fastreid 0.830 0.908 0.592 0.140 4.059G 23.478M
dukemtmcreid sbs_R101_ibn_fastreid 0.911 0.955 0.815 0.468 6.488G 42.453M
market1501 sbs_R101_ibn_fastreid 0.956 0.985 0.894 0.687 6.488G 42.453M
msmt17 sbs_R101_ibn_fastreid 0.825 0.902 0.581 0.131 6.488G 42.453M
dukemtmcreid sbs_S50_fastreid 0.908 0.955 0.798 0.429 4.665G 25.370M
market1501 sbs_S50_fastreid 0.957 0.985 0.883 0.657 4.665G 25.370M
msmt17 sbs_S50_fastreid 0.834 0.911 0.603 0.151 4.665G 25.370M
dukemtmcreid mgn_R50_fastreid 0.882 0.941 0.786 0.426 9.309G 68.675M
market1501 mgn_R50_fastreid 0.944 0.981 0.872 0.636 9.309G 68.675M
msmt17 mgn_R50_fastreid 0.786 0.883 0.569 0.142 9.309G 68.675M
dukemtmcreid mgn_R50_ibn_fastreid 0.887 0.947 0.785 0.432 9.312G 68.680M
market1501 mgn_R50_ibn_fastreid 0.942 0.979 0.876 0.649 9.312G 68.680M
msmt17 mgn_R50_ibn_fastreid 0.792 0.883 0.585 0.167 9.312G 68.680M
dukemtmcreid mgn_sbs_R50_fastreid 0.892 0.950 0.802 0.450 9.309G 68.675M
market1501 mgn_sbs_R50_fastreid 0.955 0.989 0.886 0.644 9.309G 68.675M
msmt17 mgn_sbs_R50_fastreid 0.830 0.914 0.616 0.152 9.309G 68.675M
dukemtmcreid mgn_sbs_R50_ibn_fastreid 0.909 0.960 0.814 0.460 9.312G 68.680M
market1501 mgn_sbs_R50_ibn_fastreid 0.958 0.986 0.893 0.667 9.312G 68.680M
msmt17 mgn_sbs_R50_ibn_fastreid 0.853 0.924 0.652 0.184 9.312G 68.680M
dukemtmcreid mgn_agw_R50_fastreid 0.887 0.942 0.792 0.441 9.309G 68.675M
market1501 mgn_agw_R50_fastreid 0.948 0.981 0.877 0.646 9.309G 68.675M
msmt17 mgn_agw_R50_fastreid 0.798 0.891 0.590 0.156 9.309G 68.675M
dukemtmcreid mgn_agw_R50_ibn_fastreid 0.898 0.947 0.789 0.442 9.312G 68.680M
market1501 mgn_agw_R50_ibn_fastreid 0.939 0.977 0.870 0.635 9.312G 68.680M
msmt17 mgn_agw_R50_ibn_fastreid 0.797 0.885 0.593 0.173 9.312G 68.680M
dukemtmcreid mgn_S50_fastreid 0.873 0.938 0.763 0.406 9.924G 73.946M
market1501 mgn_S50_fastreid 0.942 0.978 0.861 0.620 9.924G 73.946M
msmt17 mgn_S50_fastreid 0.782 0.879 0.566 0.165 9.924G 73.946M
dukemtmcreid mgn_S50_ibn_fastreid 0.880 0.938 0.761 0.400 9.924G 73.946M
market1501 mgn_S50_ibn_fastreid 0.941 0.976 0.863 0.625 9.924G 73.946M
msmt17 mgn_S50_ibn_fastreid 0.777 0.877 0.563 0.161 9.924G 73.946M
dukemtmcreid mgn_sbs_S50_fastreid 0.921 0.958 0.822 0.469 9.924G 73.946M
market1501 mgn_sbs_S50_fastreid 0.954 0.985 0.895 0.680 9.924G 73.946M
msmt17 mgn_sbs_S50_fastreid 0.863 0.928 0.664 0.190 9.924G 73.946M
dukemtmcreid mgn_sbs_S50_ibn_fastreid 0.915 0.957 0.821 0.472 9.924G 73.946M
market1501 mgn_sbs_S50_ibn_fastreid 0.959 0.986 0.895 0.675 9.924G 73.946M
msmt17 mgn_sbs_S50_ibn_fastreid 0.863 0.924 0.658 0.183 9.924G 73.946M
dukemtmcreid mgn_agw_S50_fastreid 0.888 0.943 0.782 0.426 9.924G 73.946M
market1501 mgn_agw_S50_fastreid 0.944 0.975 0.869 0.639 9.924G 73.946M
msmt17 mgn_agw_S50_fastreid 0.798 0.886 0.601 0.182 9.924G 73.946M
dukemtmcreid mgn_agw_S50_ibn_fastreid 0.892 0.942 0.787 0.429 9.924G 73.946M
market1501 mgn_agw_S50_ibn_fastreid 0.946 0.979 0.867 0.633 9.924G 73.946M
msmt17 mgn_agw_S50_ibn_fastreid 0.799 0.887 0.603 0.180 9.924G 73.946

Acknowledge

About

PyTorch person re-identification models, scripts, pretrained weights

Topics

Resources

Stars

Watchers

Forks

Languages