Skip to content

Literature mining of 96 contaminants in 72 foods using FoodMine This work is part of DIETxPOSOME project of FOODinteract Research Team

Notifications You must be signed in to change notification settings

I3ALAQV/Literature_mining_of_contaminants_in_food_groups

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Logo

Literature_mining_of_contaminants_in_food_groups

Literature mining of 96 contaminants in 72 foods from PubMed. This work is part of DIETxPOSOME project of FOODinteract Research Team. The code used in this repository was adapted from FoodMine.

From data to insight: Exploring contaminants in different food groups with literature mining and machine learning techniques

Abstract

Food remains a major source of human exposure to chemical contaminants that are unintentionally present in commodities globally, despite strict regulation. Scientific literature is a valuable source of quantification data on those contaminants in various foods, but manually summarizing the information is not practicable. In this review, literature mining and machine learning techniques were applied in 72 foods to obtain relevant information on 96 contaminants, including heavy metals, polychlorinated biphenyls, dioxins, furans, polycyclic aromatic hydrocarbons (PAHs), pesticides, mycotoxins, and heterocyclic aromatic amines (HAAs). The 11,723 data points collected from 254 papers from the last two decades were then used to identify the patterns of contaminants distribution. Considering contaminant categories, metals were the most studied globally, followed by PAHs, mycotoxins, pesticides, and HAAs. As for geographical region, the distribution was uneven, with Europe and Asia having the highest number of studies, followed by North and South America, Africa and Oceania. Regarding food groups, all contained metals, while PAHs were found in seven out of 12 groups. Mycotoxins were found in six groups, and pesticides in almost all except meat, eggs, and vegetable oils. HAAs appeared in only three food groups, with fish and seafood reporting the highest levels. The median concentrations of contaminants varied across food groups, with citrinin having the highest median value. The information gathered is highly relevant to explore, establish connections, and identify patterns between diverse datasets, aiming at a comprehensive view of food contamination.

Setup

Run the python notebooks in the following order to replicate the process.

  • Paper_Screening_CRFS.ipynb
  • Paper_Ranking_CRFS.ipynb

Files

Paper_Screening_CRFS.ipynb

Notebook to search through the PubMed database and filter out search results.

Paper_Ranking_CRFS.ipynb

Notebook to build a Machine Learning model to classify potential useful papers to later review manually.

Data

Folder that holds raw data from paper data collection.

Ranking

Folder that holds raw data from paper after Machine Learning classification.

Other files

  • pubmed_util.py Holds functions to interact with PubMed API for the purposes of our research.

  • filter.py Contains class Filter to filter out PubMed search results.

Select data files:

  • (Apple/Cheese/Chicken/Corn_oil/Ginger/Mussel/Peanut/Potato/Soybean/Tomato/Wheat)_scoring.xlsx Files that contain papers with potentially useful classification (0/1), used to train Machine Learning algorithm

  • dict_CRFS.pkl File that contains food name, food scientific name, and chemical compounds included in the study

Authors

Zita Martins - feel free to contact me!

Acknowledgments

About

Literature mining of 96 contaminants in 72 foods using FoodMine This work is part of DIETxPOSOME project of FOODinteract Research Team

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published