Skip to content

Commit

Permalink
challenge 2 3a 3b and sample data for 3b
Browse files Browse the repository at this point in the history
  • Loading branch information
ashsaki committed Jun 27, 2024
1 parent 73ca8b2 commit 7c638cc
Show file tree
Hide file tree
Showing 8 changed files with 1,644 additions and 0 deletions.
964 changes: 964 additions & 0 deletions docs/challenges/automation/zne/3b/data_3b.json

Large diffs are not rendered by default.

Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
226 changes: 226 additions & 0 deletions docs/challenges/automation/zne/automated_zne_challenge2.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,226 @@
from collections import deque
import itertools
import json
import numpy as np
import os
import seaborn as sns
import matplotlib.pyplot as plt

from qiskit.quantum_info import SparsePauliOp
from qiskit_ibm_runtime import Batch, EstimatorV2 as Estimator
from qiskit_ibm_runtime.fake_provider import FakeSherbrooke
from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager
from qiskit_aer import AerSimulator
from qiskit_ibm_runtime import RuntimeEncoder, RuntimeDecoder
from datetime import datetime, timezone

from circuit import ExampleCircuit

def create_logical_circuit(num_qubits, depth, seed=0):
logical_circuit = ExampleCircuit(q, d // 2) # Halved depth

# Compute-uncompute construct (doubles the depth)
inverse = logical_circuit.inverse()
logical_circuit.barrier()
logical_circuit.compose(inverse, inplace=True)

# Parameter values
rng = np.random.default_rng(seed=0)
parameter_values = rng.uniform(-np.pi, np.pi, size=logical_circuit.num_parameters)
parameter_values[0] = 0.3 # Fix interaction strength (specific to MBL circuit)
logical_circuit.assign_parameters(parameter_values, inplace=True)

return logical_circuit, parameter_values

def create_wt2_logical_operator(num_qubits):
wt2 = deque(["I"] * (num_qubits - 2) + ["Z", "Z"])
logical_observables = []

coeff = 1/num_qubits
for _ in range(num_qubits):
wt2_term = "".join(literal for literal in wt2)
logical_observables.append((wt2_term, coeff))
wt2.rotate(-1)

return SparsePauliOp.from_list(logical_observables)

def heatmap_plotter(
rel_err,
widths,
depths,
filename,
title,
directory,
xlabel="2-qubit depth",
ylabel="Number of qubits",
):
plt.rcParams.update({"text.usetex": True, "font.family": "Helvetica"})
nrows = len(widths)
ncols = len(depths)

ax = sns.heatmap(rel_err, annot=True, cbar=False, vmin=0, vmax=100, cmap="binary", fmt=".0f")
# Drawing the frame
ax.axhline(y=0, color='k', linewidth=2)

ax.axhline(y=nrows, color='k', linewidth=2)

ax.axvline(x=0, color='k', linewidth = 2)

ax.axvline(x=ncols, color='k', linewidth=2)

xticks = np.array(list(range(ncols))) + 0.5
ax.set_xticks(ticks=xticks)
ax.set_xticklabels(labels=depths)

yticks = np.array(list(range(nrows))) + 0.5
ax.set_yticks(ticks=yticks)
ax.set_yticklabels(labels=widths[::-1])

ax.set_title(title)
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)

# plt.show()

plt.savefig(
f"{directory}/{filename}",
bbox_inches="tight",
dpi=200,
)

plt.close()

if __name__ == "__main__":
num_qubits = [4, 8, 16, 32, 64]
depths = [4, 8, 16, 32, 64]
extrapolators = ["exponential", "polynomial_degree_2", "linear", ("exponential", "linear")]
# backend = FakeSherbrooke()
# backend = AerSimulator.from_backend(backend)
backend = AerSimulator(method="matrix_product_state")

# create all circuits and observables
logical_circuits = []
logical_observables = []
circuit_parameters = []
for q in num_qubits:
for d in depths:
logical_circuit, parameter_values = create_logical_circuit(num_qubits=q, depth=d, seed=0)
logical_circuits.append(logical_circuit)
circuit_parameters.append(parameter_values.tolist())

logical_observable = create_wt2_logical_operator(num_qubits=q)
logical_observables.append(logical_observable)

# optimize circuit and observables
pm = generate_preset_pass_manager(optimization_level=3, backend=backend)
physical_circuits = pm.run(logical_circuits)

physical_observables = [
logical_observables[idx].apply_layout(layout=physical_circuits[idx].layout)
for idx in range(len(logical_observables))
]

pubs = list(zip(physical_circuits, physical_observables))

timestamp = datetime.now(timezone.utc)
with Batch(backend=backend) as batch:
estimator = Estimator(mode=batch)
options = estimator.options
options.default_shots = 1000
options.optimization_level = 0
options.resilience_level = 0
options.resilience.zne_mitigation = True # Activate ZNE error mitigation only

jobs = {}
for extrapolator in extrapolators:
options.resilience.zne.extrapolator = extrapolator
job = estimator.run(pubs)
jobs[str(extrapolator)] = job
print(f" - {job.job_id()} ({extrapolator})")


results = {}
tmp = list(itertools.product(num_qubits, depths))
expvals_all = {str(extrapolator): np.empty(len(tmp)) for extrapolator in extrapolators}
for idx, (qubit, depth) in enumerate(tmp):
label = f"pub_{idx}"
results[label] = {}
results[label]["num_qubits"] = qubit
results[label]["depth"] = depth

# physical circuit is encoded using `RuntimeEncoder`. Use `RuntimeDecoder` to decode
encoded_physical_circuit = RuntimeEncoder().encode(physical_circuits[idx])
results[label]["physical_circuit"] = encoded_physical_circuit

obs = physical_observables[idx]
paulis = obs.paulis.to_labels()
coeffs = [str(coeff) for coeff in obs.coeffs]
results[label]["physical_observable"] = {
"paulis": paulis,
"coeffs": coeffs
}

# layout
layout = physical_circuits[idx].layout
final_layout = None if layout is None else layout.final_index_layout(filter_ancillas=True)
results[label]["final_qubit_layout"] = final_layout
results[label]["circuit_parameters"] = circuit_parameters[idx]

results[label]["expvals"] = {}
results[label]["job_ids"] = {}

for extrapolator in extrapolators:
extrapolator = str(extrapolator)
job = jobs[extrapolator]

primtive_results = job.result()
results[label]["job_ids"][extrapolator] = job.job_id()

pub_result = primtive_results[idx]
evs = pub_result.data.evs.tolist()
expvals_all[extrapolator][idx] = evs

results[label]["expvals"][extrapolator] = evs

all_data = {
"num_qubits_list": num_qubits,
"depths": depths,
"extrapolators": extrapolators,
"batch_id": batch.session_id,
"job_ids": [job.job_id() for job in jobs.values()],
"backend_name": backend.name,
"timestamp": timestamp.isoformat(),
"results": results
}


name_signature = f"challenge_2_{timestamp.strftime('%Y_%m_%d_%H_%M_%S_%f')}"
name_signature = "2"
if not os.path.exists(name_signature):
os.mkdir(name_signature)

with open(f"{name_signature}/data_{name_signature}.json", "w") as jf:
json.dump(all_data, jf, indent=2, sort_keys=False)

# plot heatmaps
for extrapolator in extrapolators:
extrapolator_str = str(extrapolator)

evs = np.flipud(
expvals_all[extrapolator_str].reshape((len(num_qubits), len(depths)))
)
rel_err = 100 * (1 - evs)

if isinstance(extrapolator, str):
extrapolator = [extrapolator]

heatmap_plotter(
rel_err,
widths=num_qubits,
depths=depths,
filename=f"rel_err_{name_signature}_{'_'.join(extrapolator)}.png",
title=r'Error (\%): ' + r'$\overline{\langle{Z_{q}}\rangle}$' + f' {extrapolator}',
directory=name_signature,
xlabel="2-qubit depth",
ylabel="Number of qubits",
)
Loading

0 comments on commit 7c638cc

Please sign in to comment.