Skip to content

ITensor/Observers.jl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

89 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Tests License

Observers.jl

The Observers.jl package provides functionalities to record and track metrics of interest during the iterative evaluation of a given function. It may be used to monitor convergence of optimization algorithms, measure revelant observables in numerical simulations, print useful information from an iterative method, etc.

News

Observers.jl v0.2 has been released, which preserves the same basic update! interface but a new design of the observer object, which is now just a DataFrame from DataFrames.jl. The basic constructor syntax is the same, though Observer has been deprecated in favor of observer. See the rest of this README, the examples/ and test/ directories, and the DataFrames.jl documentation to learn about how to use the new observer type.

Installation

You can install this package through the Julia package manager:

julia> ] add Observers

Basic Usage

using Observers: Observers, observer

# Series for π/4
f(k) = (-1)^(k + 1) / (2k - 1)

function my_iterative_function(niter; observer!, observe_step)
  π_approx = 0.0
  for n in 1:niter
    π_approx += f(n)
    if iszero(n % observe_step)
      Observers.update!(observer!; iteration=n, π_approx=_approx)
    end
  end
  return _approx
end

# Record the iteration
iteration(; iteration) = iteration

# Measure the relative error from π at each iteration
error(; π_approx) = abs- π_approx) / π

obs = observer(iteration, error)

niter = 10000

Now we run the function and analyze the results:

julia> π_approx = my_iterative_function(niter; (observer!)=obs, observe_step=1000)
3.1414926535900345

Results will be saved in the observer, which is just a DataFrame from the Julia package DataFrames.jl but with functions associated with each column that get called to generate new rows of the data frame. You can view the results as a table of data by printing it:

julia> obs
10×2 DataFrame
 Row │ iteration  error
     │ Int64      Float64
─────┼────────────────────────
   11000  0.00031831
   22000  0.000159155
   33000  0.000106103
   44000  7.95775e-5
   55000  6.3662e-5
   66000  5.30516e-5
   77000  4.54728e-5
   88000  3.97887e-5
   99000  3.53678e-5
  1010000  3.1831e-5

Columns store the results from each function that was passed, which can be accessed with the standard DataFrame interface:

julia> obs.error
10-element Vector{Float64}:
 0.0003183098066059948
 0.0001591549331452938
 0.00010610329244741256
 7.957747030096378e-5
 6.366197660078155e-5
 5.305164733068067e-5
 4.54728406537879e-5
 3.978873562176942e-5
 3.536776502730045e-5
 3.18309885415475e-5

julia> obs[!, "error"] == obs.error # DataFrames view access syntax
true

julia> obs[!, :error] == obs.error # Can use Symbols
true

julia> obs[:, "error"] == obs.error # Copy the column
true

julia> obs[:, :error] == obs.error # Can use Symbols
true

julia> obs[!, string(error)] == obs.error # Access using function
true

julia> obs[!, Symbol(error)] == obs.error # Access using function
true

You can perform various operations like slicing:

julia> obs[4:6, :]
3×2 DataFrame
 Row │ iteration  error
     │ Int64      Float64
─────┼───────────────────────
   14000  7.95775e-5
   25000  6.3662e-5
   36000  5.30516e-5

See the DataFrames.jl documentation documentation for more information on operations you can perform, along with the examples/ and test/ directory. You will have to load DataFrames.jl with using DataFrames to access DataFrame functions.

Custom column names

Alternatively, you can pass string names with the functions which will become the names of the columns of the observer:

julia> obs = observer("Iteration" => iteration, "Error" => error)
0×2 DataFrame
 Row │ Iteration  Error
     │ Union{}    Union{}
─────┴────────────────────

in which case the results can be accessed from the given specified name:

julia> obs.Error
Union{}[]

julia> obs.Iteration
Union{}[]

This is particularly useful if you pass anonymous functions into the observer, in which case the automatically generated name of the column would be randomly generated. For example:

julia> obs = observer((; iteration) -> iteration, (; π_approx) -> abs- π_approx) / π)
0×2 DataFrame
 Row │ #4       #6
     │ Union{}  Union{}
─────┴──────────────────

julia> π_approx = my_iterative_function(niter; (observer!)=obs, observe_step=1000)
3.1414926535900345

julia> obs
10×2 DataFrame
 Row │ #4     #6
     │ Int64  Float64
─────┼────────────────────
   11000  0.00031831
   22000  0.000159155
   33000  0.000106103
   44000  7.95775e-5
   55000  6.3662e-5
   66000  5.30516e-5
   77000  4.54728e-5
   88000  3.97887e-5
   99000  3.53678e-5
  1010000  3.1831e-5

You can see that the names of the functions are automatically generated by Julia, since they are anonymous functions.

This will make the results harder to access by name, but you can still use positional information since the columns are ordered based on how the observer was defined:

julia> obs[!, 1]
10-element Vector{Int64}:
  1000
  2000
  3000
  4000
  5000
  6000
  7000
  8000
  9000
 10000

julia> obs[!, 2]
10-element Vector{Float64}:
 0.0003183098066059948
 0.0001591549331452938
 0.00010610329244741256
 7.957747030096378e-5
 6.366197660078155e-5
 5.305164733068067e-5
 4.54728406537879e-5
 3.978873562176942e-5
 3.536776502730045e-5
 3.18309885415475e-5

You could also save the anonymous functions in variables and use them to access the results:

julia> iter = (; iteration) -> iteration
#10 (generic function with 1 method)

julia> err = (; π_approx) -> abs- π_approx) / π
#13 (generic function with 1 method)

julia> obs = observer(iter, err)
0×2 DataFrame
 Row │ #10      #13
     │ Union{}  Union{}
─────┴──────────────────

julia> π_approx = my_iterative_function(niter; (observer!)=obs, observe_step=1000)
3.1414926535900345

julia> obs
10×2 DataFrame
 Row │ #10    #13
     │ Int64  Float64
─────┼────────────────────
   11000  0.00031831
   22000  0.000159155
   33000  0.000106103
   44000  7.95775e-5
   55000  6.3662e-5
   66000  5.30516e-5
   77000  4.54728e-5
   88000  3.97887e-5
   99000  3.53678e-5
  1010000  3.1831e-5

You can use the functions themselves to access results, as long as you convert them to strings or symbols:

julia> obs[!, string(iter)]
10-element Vector{Int64}:
  1000
  2000
  3000
  4000
  5000
  6000
  7000
  8000
  9000
 10000

julia> obs[!, Symbol(err)]
10-element Vector{Float64}:
 0.0003183098066059948
 0.0001591549331452938
 0.00010610329244741256
 7.957747030096378e-5
 6.366197660078155e-5
 5.305164733068067e-5
 4.54728406537879e-5
 3.978873562176942e-5
 3.536776502730045e-5
 3.18309885415475e-5

You can also rename the columns to more desirable names using the rename! function from DataFrames:

julia> using DataFrames: rename!

julia> rename!(obs, ["Iteration", "Error"])
10×2 DataFrame
 Row │ Iteration  Error
     │ Int64      Float64
─────┼────────────────────────
   11000  0.00031831
   22000  0.000159155
   33000  0.000106103
   44000  7.95775e-5
   55000  6.3662e-5
   66000  5.30516e-5
   77000  4.54728e-5
   88000  3.97887e-5
   99000  3.53678e-5
  1010000  3.1831e-5

julia> obs.Iteration
10-element Vector{Int64}:
  1000
  2000
  3000
  4000
  5000
  6000
  7000
  8000
  9000
 10000

julia> obs.Error
10-element Vector{Float64}:
 0.0003183098066059948
 0.0001591549331452938
 0.00010610329244741256
 7.957747030096378e-5
 6.366197660078155e-5
 5.305164733068067e-5
 4.54728406537879e-5
 3.978873562176942e-5
 3.536776502730045e-5
 3.18309885415475e-5

Column functions will be preserved even if the columns are renamed (and in any other operation in which DataFrames.jl preserves so-called :note-style metadata, see the DataFrames.jl documentation on metadata for more details.

Accessing and modifying functions

You can access and modify functions of an observer with Observers.get_function, Observers.set_function!, and Observers.insert_function!:

julia> Observers.get_function(obs, "Iteration") == iter
true

julia> Observers.get_function(obs, "Error") == err
true

julia> Observers.set_function!(obs, "Error" => sin);

julia> Observers.get_function(obs, "Error") == sin
true

julia> Observers.insert_function!(obs, "New column" => cos);

julia> Observers.get_function(obs, "New column") == cos
true

julia> obs
10×3 DataFrame
 Row │ Iteration  Error        New column
     │ Int64      Float64      Missing
─────┼────────────────────────────────────
   11000  0.00031831      missing
   22000  0.000159155     missing
   33000  0.000106103     missing
   44000  7.95775e-5      missing
   55000  6.3662e-5       missing
   66000  5.30516e-5      missing
   77000  4.54728e-5      missing
   88000  3.97887e-5      missing
   99000  3.53678e-5      missing
  1010000  3.1831e-5       missing

Observers.set_function! just updates the function of an existing column but doesn't create new columns, while Observers.insert_function! creates a new column and sets the function of that new column but won't update an existing column. For example, these will both throw errors:

Observers.set_function!(obs, "New column 2", cos)
Observers.insert_function!(obs, "Error", cos)

Alternatively, if you define the observer with column names to begin with, then you can get the results using the function names:

julia> obs = observer(
         "Iteration" => (; iteration) -> iteration,
         "Error" => (; π_approx) -> abs- π_approx) / π,
       )
0×2 DataFrame
 Row │ Iteration  Error
     │ Union{}    Union{}
─────┴────────────────────

julia> π_approx = my_iterative_function(niter; (observer!)=obs, observe_step=1000)
3.1414926535900345

julia> obs.Iteration
10-element Vector{Int64}:
  1000
  2000
  3000
  4000
  5000
  6000
  7000
  8000
  9000
 10000

julia> obs.Error
10-element Vector{Float64}:
 0.0003183098066059948
 0.0001591549331452938
 0.00010610329244741256
 7.957747030096378e-5
 6.366197660078155e-5
 5.305164733068067e-5
 4.54728406537879e-5
 3.978873562176942e-5
 3.536776502730045e-5
 3.18309885415475e-5

Reading and Writing to Disk

You can save and load observers with packages like JLD2.jl, or any other packages you like:

using JLD2
jldsave("results.jld2"; obs)
obs_loaded = load("results.jld2", "obs")
julia> obs_loaded == obs
true

julia> obs_loaded.Error == obs.Error
true

Another option is saving and loading as a CSV file, though this will drop information about the functions associated with each column:

using CSV: CSV
using DataFrames: DataFrame
CSV.write("results.csv", obs)
obs_loaded = DataFrame(CSV.File("results.csv"))
julia> obs_loaded == obs
true

julia> obs_loaded.Error == obs.Error
true

Generating this README

This README file was generated with Weave.jl with the following commands:

using Observers: Observers
using Weave: Weave
Weave.weave(
  joinpath(pkgdir(Observers), "examples", "README.jl");
  doctype="github",
  out_path=pkgdir(Observers),
)